Recent Developments in Quantum Mechanics pp 33-48 | Cite as
Fourier Transform and Differential Equations
Chapter
- 1 Citations
- 164 Downloads
Summary
We study, in the complex domain, the action of the Fourier transform on the solutions of ordinary linear differential equations with polynomial coefficients. In the classical “Laplace method”, there are some restrictions; also, some choice of integration contours seem rather unsystematic. We show how to remove these restrictions and how to make these choices in a more systematic way.
Keywords
Exact Sequence Asymptotic Expansion Exponential Type Complex Domain Polynomial Coefficient
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Litterature
- [Ca]Candelpergher B. — Une introduction à la résurgence,Gazette des Mathématiciens, Soc. Math. Fr., 42 (1989), 36–64.MathSciNetzbMATHGoogle Scholar
- [E]Ecalle J. — Les fonctions résurgentes,vol. I to III, Publications mathématiques d’Orsay, 1981–85.Google Scholar
- [I]Ince E.L.. — Ordinary differential equations, Dover, New-York, 1956.Google Scholar
- [Ka]Kashiwara M. — Systems of microdifferential equations, Progress in math., Birkhaüser, 1983.zbMATHGoogle Scholar
- [Ko]Komatsu H. — Operational calculus, hyperfunctions, and ultradistributions, Algebraic analysis (papers dedicated to M. Sato ), Academic Press (1988), 357–372.Google Scholar
- [Ma 1]Malgrange B. — Introduction aux travaux de J. Ecalle,l’Enseignement mathématique, 31 (1985), 261–282.Google Scholar
- [Ma 2]Malgrange B. — Equations différentielles linéaires et transformation de Fourier, Ensaios Matemâticos, vol. 1, Soc. Brasil de Matemâtica, 1989.Google Scholar
- [Ma 3]Malgrange B. — Systèmes holonomes à une variable,(book, to be published).Google Scholar
- [Ma 4]Malgrange B. — Sur les points singuliers des équations différentielles, l’Enseignement mathématique, 20 fasc.1–2 (1974), 147–176.Google Scholar
- [Ra]Ramis J.-P. — Dévissage Gevrey,Astérisque, 59–60 (1978), 173–204.Google Scholar
- [Ro]Rolba P. — Lemme de Hensel pour des opérateurs différentiels,l’Enseignement mathématique, 26 fasc. 3–4 (1980), 279–311.Google Scholar
- [S-K-K]Sato M., Kawai T., Kashiwara M. — Hyperfunctions and pseudodifferential equations,Lect. Notes in Math., 287 (1973), 265–529, Springer-Verlag.Google Scholar
- [W]Wasow W. — Asymptotic expansions for ordinary differential equations, Interscience publishers, 1965.Google Scholar
Copyright information
© Springer Science+Business Media Dordrecht 1991