Advertisement

Propagation des Singularites Gevrey Pour La Diffraction

  • Bernard Lascar
  • Richard Lascar
Chapter
  • 153 Downloads
Part of the Mathematical Physics Studies book series (MPST, volume 12)

Abstract

We describe in these notes a result of propagation of Gevrey singularities for diffractive waves.

Keywords

Nous Allons Microlocal Parametrices Obtient Alors Notre Travail Obtient Donc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Bardos- G. Lebeau- J. Rauch. Scattering frequencies and Gevrey 3 singularities. Inventiones math. 90 (1987). 77–114.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    L. Carleson. On universal moment problems. Math. Scand. 9. (1961). 197–206MathSciNetzbMATHGoogle Scholar
  3. [3]
    G. Eskin. General initial boundary problems for second order hyperbolic equations. D. Reidel. Co. Dordrecht, Boston, London. (1981). 19–54.Google Scholar
  4. [4]
    L. Hörmander. The Analysis of linear differential operators III. Springer-Verlag 1985.CrossRefGoogle Scholar
  5. [5]
    V. Ivrii. Wave front sets of solutions of boundary value problems for a class of symetric hyperbolic systems. Sibirian Math. Journal. 21. (1980). 527–534.CrossRefGoogle Scholar
  6. [6]
    B. Lascar. Propagation des singularités Gevrey pour des opérateurs hyperboliques. American Journal of Maths. 110. (1988). 413–449.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    G. Lebeau. Régularité Gevrey 3 pour la diffraction. Comm. in Partial Differential Equations. 9. 15. (1985). 1437–1494.MathSciNetCrossRefGoogle Scholar
  8. [8]
    R. Melrose. Microlocal parametrices for diffractive boundary value problems. Duke Math. Journal. 42. (1975). 605–635.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    M. Taylor. Grazing rays and reflection of singularities to wave equations. Comm. Pure Appl. Math. 29. (1976). 1–38.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    J. Sjöstrand. Propagation of analytic singularities for second order Dirichlet problems. I, II, III. Comm. in Partial Differential Equations.5.1. (1980). 41–94. 5. 2. (1980). 187–207. 6. 5. (1981). 499–567.Google Scholar
  11. [11]
    J. Sjöstrand. Singularités analytiques microlocales. Astérisque 95. (1984). S. M.F.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Bernard Lascar
    • 1
  • Richard Lascar
    • 1
  1. 1.Université Pierre et Marie CurieParisFrance

Personalised recommendations