Recent Developments in Quantum Mechanics pp 243-255 | Cite as
Asymptotic Observables in the N-Body Quantum Long Range Scattering
Chapter
- 1 Citations
- 152 Downloads
Abstract
Certain observables converge in the Heisenberg picture to a limit as time goes to ±∞. These limits, which may be called asymptotic observables, are especially interesting in the context of long range N-body Schrödinger operators. By studying certain natural classes of asymptotic observables one can get a lot of insight in the quantum N-body scattering.
Preview
Unable to display preview. Download preview PDF.
References
- [A]Agmon, S.: Lectures on the exponential decay of solutions of second order elliptic equations, Princeton University Press, 1982.Google Scholar
- [ABG]Amrein, W.O., Boutet de Monvel-Berthier,A.M. and Georgescu,V.: Notes on the N-body problem, preprint, Génève, 1989.Google Scholar
- [AGM]Amrein, E.O., Georgescu, V. and Martin, Ph.A.: Approche algébrique de la théorie non-relativiste de la diffusion aux canaux multiples, in: Physical Reality and Mathematical Description, Enz/Mehra (eds), 255–276 (1974).CrossRefGoogle Scholar
- [AMM]Amrein, W.O., Martin, Ph.A. and Misra, B.: On the asymptotic condition of scattering theory, Helv.Phys.Acta 43, 313–344 (1970).MathSciNetzbMATHGoogle Scholar
- [CFKS]Cycon, H.L., Froese, R., Kirsch, W. and Simon, B.: Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Springer, Berlin, Heidelberg, New York, 1987.Google Scholar
- [Del]Derezinski, J.: A new proof of the propagation theorem for N-body quantum systems, Comm.Math.Phys. 122, 203–231 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [De2]Derezinski, J.: Algebraic Approach to the N-body Quantum Long Range Scattering, Preprint 1990.Google Scholar
- [Do]Dollard, J.: Asymptotic convergence and Coulomb interaction, Journ.Math.Phys. 5, 729–738 (1964).MathSciNetADSCrossRefGoogle Scholar
- [El]Enss, V.: Asymptotic observables on scattering states, Comm. Math.Phys. 89, 245–268 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [E2]Enss, V.: Quantum scattering theory of two-and three-body systems with potentials of short and long range, in: Schrödinger Operators, ed. by S.Graffi, Lecture Notes in Mathematics, vol. 1159, ( Springer, Berlin, Heidelberg, New York 1985 ).Google Scholar
- [IsoKi]Isozaki, H. and Kitada, H.: Scattering matrices for two-body Schrödinger operators, Scientific Papers of the College of Arts and Sciences, Tokyo Univ. 35, 81–107 (1985).MathSciNetGoogle Scholar
- [La]Lavine, R.: Scattering theory for long range potentials, Journ.Func.Anal. 5, 368–382, (1970).MathSciNetzbMATHCrossRefGoogle Scholar
- [Ml]Mourre, E.: Absence of singular continuous spectrum for certain self adjoint operators, Comm.Math.Phys. 78, 391–408 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
- [M2]Mourre, E.: Opérateurs conjugués et propriétés de propagations, Comm.Math.Phys. 91, 279–300 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [Pe]Perry, P.: Scattering Theory by the Enss Method(Harwood Academic London 1983).zbMATHGoogle Scholar
- [RS]Reed, M. and Simon B.: Methods of Modern Mathematical Physics, III: Scattering Theory (Academic Press, New York, 1979 ).zbMATHGoogle Scholar
- [Sig]Sigal, I.M.: Geometric methods in the quantum many-body problem. Nonexistence of very negative ions., Comm.Math.Phys. 85, 309–324 (1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [SigSofl]Sigal, I.M. and Soffer, A.: The N-particle scattering problem: asymptotic completeness for short range systems, Anal.Math. 125, 35–108, (1987).MathSciNetGoogle Scholar
- [SigSof2]Sigal, I.M. and Soffer, A.: Local decay and velocity bounds, preprint, Princeton (1988).Google Scholar
- [SigSof3]Sigal, I.M. and Soffer, A.: Long range many body scattering, Asymptotic clustering for Coulomb type potentials, preprint, Toronto (1988).Google Scholar
- [Sim]Simon, B.: Geometric methods in multiparticle quantum systems, Comm.Math.Phys. 55, 259–274, (1977).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [Ta]Takesaki, M.: Theory of Operator Algebras I. Springer Berlin, Heidelberg, New York 1979.zbMATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 1991