Recent Developments in Quantum Mechanics pp 223-242 | Cite as
On Topics in Spectral and Stochastic Analysis for Schrödinger Operators
Chapter
- 4 Citations
- 151 Downloads
Abstract
It is given a certain overview on results in spectral theory for Schrödinger and generalized Schrödinger operators obtained in the last years by means of stochastic analysis, in particular by the use of the Feynman-Kac formulae.
Keywords
Stochastic Analysis Wave Operator Continuous Semigroup Singularity Region Large Time Behaviour
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]Aizenman, H.; Simon, B: Brownian motion and Harnack inequality for Schrödinger operators. Comm.Pure Appl.Math., Vol. XXXV, 209–273 (1982).MathSciNetCrossRefGoogle Scholar
- [2]Angelescu, N.; Nenciu, G.: On the independence of the thermodynamic limit on the boundary conditions in quantum statistical mechanics Comm.Math.Phys. 29, 15–30 (1973).MathSciNetADSCrossRefGoogle Scholar
- [3]Baumgärtel, H; Demuth, M.: Decoupling by a projection. Rep.Math.Phys 15, 173–186 (1979).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [4]Berthier, A.M.; Gaveau, B.: Critère de convergence des fonctionelle de Kac et application en mécanique quantique et en géométrie. J.Funct.Anal. 29, 416–424 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
- [5]Carmona, R.: Regularity properties of Schrödinger and Dirichlet semigroups. J.Funct.Anal. 33, 259–296 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
- [6]Carmona, R.; Masters, W.Ch.; Simon, B.: Relativistic Schrödinger operators: Asymptotic behaviour of the eigenfunctions. Preprint Cal.Inst. of Techn. (1989), to be published in J.Funct.Anal.Google Scholar
- [7]Combes, J.M.; Weder, R.: New criterion for the existence and completeness of wave operators and applications to scattering of unbounded obstacles. Comm.Part.Equat. 6, 1179–1223 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
- [8]Constantin, P.: Scattering for Schrödinger operators in a class of domains with non-compact boundaries. J.Funct.Anal. 44, 87–119 (1981)MathSciNetCrossRefGoogle Scholar
- [9]Cycon, H.L.; Froese, R.G.; Kirsch, W.; Simon, B.: Schrödinger operators with applications to quantum mechanics and global geometry. Textbooks in Math.Phys., Springer-Verlag, 1986.Google Scholar
- [10]Davies, E.B.: Trace properties of the Dirichlet Laplacian. Math.Z. 188, 245–251 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
- [11]Davies, E.B.; van den Berg, M.: Heat flow out of regions in ℝn, Preprint 1988.Google Scholar
- [12]Davies, E.B.: Heat kernels and spectral theory.Cambridge Univ. Press, 1988 (to appear).Google Scholar
- [13]Demuth, M.: On transformations in the Feynman-Kac-formula and quantum mechanical N-body systems. Math.Nachr. 122, 109–118 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
- [14]Demuth, M.: On spectral properties of semigroups with Dirichlet generators. In: Proceedings of Symp. “Part.Diff.Equat.”, Holzhau 1988,.Teubner-Texte zur Mathematik, Vol. 112, 52–62 (1988).Google Scholar
- [15]Demuth, M.; van Casteren, J.: On spectral theory for Feller generators. Prep.Univ.Instelling Antwerpen, 88–18 (1988).Google Scholar
- [16]Demuth, M.; van Casteren, J.: On differences of heat semigroups. Prep.Univ.Instelling Antwerpen, 88–13 (1988).Google Scholar
- [17]Fridman, A.: Stochastic differential equations and applications, Vol.1, Academic Press, 1975.Google Scholar
- [18]Ginibre, J.: Some applications of functional integration in statistical mechanics and quantum field theory. In: Statistical mechanics and quantum field theory, Les Houches 1970. Ed.C.DeWitt, R.Stora. Gordon and Breach, 327–427 (1971).Google Scholar
- [19]Hempel, R.; Voigt, J.: The spectrum of a Schrödinger operator in LP(ℝv) is p-independent. Comm.Math.Phys. 104, 243–250 (1986).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [20]Khas’minskii, R.S.: On positive solutions of the equation Au + Vu=0 (Russian). Theor.Verojatnost.i Primenen. 4, 332–341 (1959).Google Scholar
- [21]Kirsch, W.; Simon, B.: Universal lower bounds on eigenvalues splitting for one-dimensional Schrödinger operators. Comm.Math.Phys. 97, 453–460 (1985).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [22]Kirsch, W.; Simon, B.: Comparison theorems for a gap of Schrödinger operators. J.Funct.Anal. 75, 396–410 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
- [23]Le-Gall, J.-F.: Sur une conjecture de M.Kac. Prob.Th.Rel.Fields 78, 389–402 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
- [24]Leinfelder, H.: Gauge invariance of Schrödinger operators and related spectral properties. J.Operator Theory 9, 163–179 (1983).MathSciNetzbMATHGoogle Scholar
- [25]Park, Y.M.: Bounds on exponentials of local number operators in quantum statistical mechanics. Comm.Math.Phys. 94, 1–33 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [26]Portenko,N.I.: Diffusion processes with unbounded drift coefficient (Russian). Teor.Verojatnost i Primenen. 20, 29–39 (1975).MathSciNetGoogle Scholar
- [27]Ray, D.B.: On spectra of second-order differential operators. Trans.Amer.Math.Soc. 77, 299–321 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
- [28]Simon, B.: Functional integration and quantum physics. Academic Press 1979.Google Scholar
- [29]Simon, B.: Schrödinger semigroups. Bull.Amer.Math.Soc. 7, 447–526 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
- [30]Simon, B.: Brownian motion, LP-properties of Schrödinger operators and the localization of binding. J.Funct.Anal. 35, 215–229 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
- [31]Simon, B.: Large time behaviour of the LP-norm of Schrödinger semigroups. J.Funct.Anal. 40, 66–83 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
- [32]Spitzer, F.: Electrostatic capacity, heat flow, and Brownian motion. Z.Wahrscheinlichkeitsth.u.verw. Gebiete 3, 110–121 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
- [33]van Casteren, J.: Generators of strongly continuous semigroups. Pitman, 1985.Google Scholar
- [34]van Casteren, J.: On generalized Schrödinger semigroups. Proc.of ISAM 88, Markovsche Processe und Steuerungstheorie, Gaussig GDR, 11.-15. Jan.1988.Google Scholar
- [35]van Casteren, J.: Pointwise inequalities for Schrödinger semigroups. To appear in Lect.Notes Pure Appl.Math.; Preprint Univ.Instelling Antwerpen 87–27 (1987).Google Scholar
- [36]van den Berg, M.: On the spectrum of the Dirichlet Laplacian for hornshaped regions in 6t“ with infinite volume. J.Funct.Anal. 58, 150–156 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
- [37]van den Berg, M.: A uniform bound on trace etA for convex regions in tR’ with smooth boundaries. Comm.Math.Phys. 92, 525–530 (1984).MathSciNetADSCrossRefGoogle Scholar
- [38]van den Berg, M.: On the asymptotics of the heat equation and bounds on traces associate with Dirichlet Laplacian. J.Funct.Anal. 71, 279–293 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 1991