Recent Developments in Quantum Mechanics pp 209-222 | Cite as
On the Eigenvalues of a Perturbed Harmonic Oscillator
Chapter
- 1 Citations
- 152 Downloads
Abstract
We study Schrödinger operators on Rn of the form
where q(x) is a positive definite quadratic form and V(x) a potential which may be considered as a perturbation. We show that the discrete spectrum of H has similar properties as that of the unperturbed H0 = -∆+q. In particular the singular points of the distribution on R: t → Tr eitH are the lengths of the periodic orbits of the hamiltonian flow associated to H0.This work was done in collaboration with G.Lebeau and L.Boutet de Monvel.
$$H = {H_v} = - \Delta + q(x) + V(x) $$
Keywords
Pseudodifferential Operator Trace Formula Fourier Integral Operator Symbolic Calculus Microlocal Analysis
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [ABml]S.Albeverio, A.Boutet de Monvel-Berthier and G.Lebeau, “Green’s function and the trace formula for the Schrödinger operator”, in preparation.Google Scholar
- [ABHk]S.Albeverio, Ph.Blanchard and R.Hoegh-Krohn, “Feynman paths integral and the trace formula for the Schrödinger operators”, Comm. Math. Phys. 83, 49–76 (1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [BB]R.Balian and C.Bloch, “Solutions of the Schrödinger equations in terms of classical paths”, Annals of Physics 85, 514–545 (1974).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [BF]R.Beals and C.Fefferman, “Spatially inhomogeneous pseudodifferential operators I”, Comm. Pure. Appl. Math 27, 1–24 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
- [B1]R.Beals, “A general calculus of pseudodifferential operators”, Duke. Math. J. 42, 1–42 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
- [B2]R.Beals, “Characterization of pseudodifferential operators and apllications, Duke Math.J. 44, 47–57, (1977), and correction 46, 215 (1979).Google Scholar
- [BM]M.V. Berry and K.E.Mount, “Semi-classical approximations in wave mechanics”, Rep. Prog. Phys. 35, 315–397 (1972).ADSCrossRefGoogle Scholar
- [BmBmL]A.Boutet de Monvel-Berthier, L.Boutet de Monvel and G.Lebeau, “On the eigenvalues of the perturbed harmonic oscillator”, in preparation.Google Scholar
- [Bm1]L.Boutet de Monvel, “Revue sur la théorie des D-modules d’opérateurs pseudodifférentiels”, Ecole internationale d’été Franco-Roumaine, Brasov (1989), this volume.Google Scholar
- [Bm2]L.Boutet de Monvel, “Hypoelliptic operators with double characteristics and related pseudodifferential operators”, Comm. Pure. Appl. Math 27, 585–639 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
- [Cl]J.Chazarain, “Formule de Poisson pour les variétés riemanniennes”, Invent. Math. 24, 65–82 (1974).MathSciNetADSzbMATHCrossRefGoogle Scholar
- [C2]J.Chazarain, “Spectre d’un hamiltonien quantique et période des trajectoires classiques”, C.R. Acad. Sci. Paris 288, 725–728 (1979).MathSciNetzbMATHGoogle Scholar
- [C3]J.Chazarain, “Comportement du spectre d’un hamiltonien quantique”, C.R. Acad. Sci. Paris 288, 895–897 (1979).MathSciNetzbMATHGoogle Scholar
- [C4]J.Chazarain, “Spectre d’un hamiltonien quantique et mécanique classique”, Comm. in P.D.E. 5 (6), 595–644 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
- [Cvl]Y.Colin de Verdière, “Quasi-modes sur les variétés riemanniennes compactes”, Invent. Math. 43, 15–52 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
- [Cv2]Y.Colin de Verdière, “Sur le spectre des opérateurs elliptiques à bicaractéristiques périodiques”, C.R. Acad. Sci. Paris 288, 1195–1197 (1978).Google Scholar
- [DC]J.J. Duistermaat and V.Guillemin, “The spectrum of positive elliptic operators and periodic geodesics”, Proc. A.M.S. Summer Inst. Diff. Geom., Stanford (1973).Google Scholar
- [GS]V.Guillemin and S.Stenberg, “Geometric asymptotics”, A.M.S. (1977).Google Scholar
- [Hl]L.Hörmander, “Pseudodifferential operators and hypoelliptic equations”, Amer. Math. Soc. Symp. on Singular Integrals, 138–183 (1966).Google Scholar
- [H2]L.Hörmander, “Fourier integral operators I”, Acta. Math. 127, 79–183 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
- [H3]L.Hörmander, “The analysis of linear pseudodifferential operators IV”, Springer-Verlag (1985).Google Scholar
- [L]J.Leray, “Analyse lagrangienne et mécanique quantique”, Collège de France (19761977).Google Scholar
- [M]V.P.Maslov, “Théorie des Perturbations et méthodes asymptotiques”, Dunod (1972).Google Scholar
- [S]J.Sjöstrand, Private communication.Google Scholar
- [V1]A.Voros, “Développements semi-classiques”, Thèse, Orsay (1972).Google Scholar
- [V2]A.Voros, “Semi-classical approximation”, Ann. Inst. H. Poincaré 24, 31–50 (1976).MathSciNetGoogle Scholar
- [W]A.Weinstein, “Asymptotic of the eigenvalues cluster of the Laplacian plus a potential”, Duke Math. J. 44, 883–892 (1972).CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 1991