On the Eigenvalues of a Perturbed Harmonic Oscillator

  • Anne Boutet de Monvel-Berthier
Part of the Mathematical Physics Studies book series (MPST, volume 12)


We study Schrödinger operators on Rn of the form
$$H = {H_v} = - \Delta + q(x) + V(x) $$
where q(x) is a positive definite quadratic form and V(x) a potential which may be considered as a perturbation. We show that the discrete spectrum of H has similar properties as that of the unperturbed H0 = -∆+q. In particular the singular points of the distribution on R: t → Tr eitH are the lengths of the periodic orbits of the hamiltonian flow associated to H0.This work was done in collaboration with G.Lebeau and L.Boutet de Monvel.


Pseudodifferential Operator Trace Formula Fourier Integral Operator Symbolic Calculus Microlocal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABml]
    S.Albeverio, A.Boutet de Monvel-Berthier and G.Lebeau, “Green’s function and the trace formula for the Schrödinger operator”, in preparation.Google Scholar
  2. [ABHk]
    S.Albeverio, Ph.Blanchard and R.Hoegh-Krohn, “Feynman paths integral and the trace formula for the Schrödinger operators”, Comm. Math. Phys. 83, 49–76 (1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [BB]
    R.Balian and C.Bloch, “Solutions of the Schrödinger equations in terms of classical paths”, Annals of Physics 85, 514–545 (1974).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [BF]
    R.Beals and C.Fefferman, “Spatially inhomogeneous pseudodifferential operators I”, Comm. Pure. Appl. Math 27, 1–24 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [B1]
    R.Beals, “A general calculus of pseudodifferential operators”, Duke. Math. J. 42, 1–42 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [B2]
    R.Beals, “Characterization of pseudodifferential operators and apllications, Duke Math.J. 44, 47–57, (1977), and correction 46, 215 (1979).Google Scholar
  7. [BM]
    M.V. Berry and K.E.Mount, “Semi-classical approximations in wave mechanics”, Rep. Prog. Phys. 35, 315–397 (1972).ADSCrossRefGoogle Scholar
  8. [BmBmL]
    A.Boutet de Monvel-Berthier, L.Boutet de Monvel and G.Lebeau, “On the eigenvalues of the perturbed harmonic oscillator”, in preparation.Google Scholar
  9. [Bm1]
    L.Boutet de Monvel, “Revue sur la théorie des D-modules d’opérateurs pseudodifférentiels”, Ecole internationale d’été Franco-Roumaine, Brasov (1989), this volume.Google Scholar
  10. [Bm2]
    L.Boutet de Monvel, “Hypoelliptic operators with double characteristics and related pseudodifferential operators”, Comm. Pure. Appl. Math 27, 585–639 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [Cl]
    J.Chazarain, “Formule de Poisson pour les variétés riemanniennes”, Invent. Math. 24, 65–82 (1974).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [C2]
    J.Chazarain, “Spectre d’un hamiltonien quantique et période des trajectoires classiques”, C.R. Acad. Sci. Paris 288, 725–728 (1979).MathSciNetzbMATHGoogle Scholar
  13. [C3]
    J.Chazarain, “Comportement du spectre d’un hamiltonien quantique”, C.R. Acad. Sci. Paris 288, 895–897 (1979).MathSciNetzbMATHGoogle Scholar
  14. [C4]
    J.Chazarain, “Spectre d’un hamiltonien quantique et mécanique classique”, Comm. in P.D.E. 5 (6), 595–644 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [Cvl]
    Y.Colin de Verdière, “Quasi-modes sur les variétés riemanniennes compactes”, Invent. Math. 43, 15–52 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [Cv2]
    Y.Colin de Verdière, “Sur le spectre des opérateurs elliptiques à bicaractéristiques périodiques”, C.R. Acad. Sci. Paris 288, 1195–1197 (1978).Google Scholar
  17. [DC]
    J.J. Duistermaat and V.Guillemin, “The spectrum of positive elliptic operators and periodic geodesics”, Proc. A.M.S. Summer Inst. Diff. Geom., Stanford (1973).Google Scholar
  18. [GS]
    V.Guillemin and S.Stenberg, “Geometric asymptotics”, A.M.S. (1977).Google Scholar
  19. [Hl]
    L.Hörmander, “Pseudodifferential operators and hypoelliptic equations”, Amer. Math. Soc. Symp. on Singular Integrals, 138–183 (1966).Google Scholar
  20. [H2]
    L.Hörmander, “Fourier integral operators I”, Acta. Math. 127, 79–183 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  21. [H3]
    L.Hörmander, “The analysis of linear pseudodifferential operators IV”, Springer-Verlag (1985).Google Scholar
  22. [L]
    J.Leray, “Analyse lagrangienne et mécanique quantique”, Collège de France (19761977).Google Scholar
  23. [M]
    V.P.Maslov, “Théorie des Perturbations et méthodes asymptotiques”, Dunod (1972).Google Scholar
  24. [S]
    J.Sjöstrand, Private communication.Google Scholar
  25. [V1]
    A.Voros, “Développements semi-classiques”, Thèse, Orsay (1972).Google Scholar
  26. [V2]
    A.Voros, “Semi-classical approximation”, Ann. Inst. H. Poincaré 24, 31–50 (1976).MathSciNetGoogle Scholar
  27. [W]
    A.Weinstein, “Asymptotic of the eigenvalues cluster of the Laplacian plus a potential”, Duke Math. J. 44, 883–892 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Anne Boutet de Monvel-Berthier
    • 1
  1. 1.Laboratoire de Physique Mathématique et GéométrieUniversité Paris VIIParis Cedex 05France

Personalised recommendations