Skip to main content

Multi-Nuclear Relaxation Time Studies in Undercooled Aqueous Electrolytes

  • Chapter
Hydrogen-Bonded Liquids

Part of the book series: NATO ASI Series ((ASIC,volume 329))

Abstract

The dynamic properties of water molecules coordinated to the ions Li+ and F in undercooled LiCl and KF solutions have been investigated with NMR. Relaxation time studies at low temperatures provide details of molecular motions as well as certain features of the local arrangement in the coordination sphere of these ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.A. Angell (1982), Supercooled Water, in F. Franks ed.‘Water-A Comprehensive Treatise’,Vol.7, p.1–76, Plenum, New York

    Google Scholar 

  2. C.A. Angell, E.J. Sare, J. Donnella, D.R. MacFarlane (1981), ‘Homogeneous Nucleation and Glass Transition Temperatures in Solutions of Li Salts in D2O and H2O. Doubly Unstable Glass Region’, J. Phys. Chem.85, 1461–64

    Article  Google Scholar 

  3. H. G. Hertz, R. Tutsch, H. Versmold (1971), ‘Molecular Motion and Structure around the Hydrated Ions Li+ and Al3+’, Ber. Bunsenges. phys. Chem.75, 1177–1191

    Google Scholar 

  4. S. A. Rice, M. Sceats (1981), ‘A Random Network Model for Water’, J. Phys.Chem. 85, 1108–1119

    Article  Google Scholar 

  5. E. W. Lang, H.-D. Lüdemann (1985), ‘p, T, c-Dependence of 2H Spin-Lattice Relaxation Rates in Supercooled LiCl-D2O Solutions’, Ber. Bunsenges. Phys. Chem. 89, 508–516

    Article  Google Scholar 

  6. J. E. Enderby (1987), ‘Diffraction Studies of Aqueous Ionic Solutions’, in M.-C. Bellissant-Funel, G. W. Neilson eds.,The Physics and Chemistry of Aqueous Ionic Solutions, Nato ASI Series C, Vol. 208, p. 129–145, Reidel, Dordrecht, Holland

    Chapter  Google Scholar 

  7. A. H.Narten, F. Vaslow, H.A. Levy (1973), ‘Diffraction Pattern and Structure of Aqueous Lithium Chloride Solutions’, J. Chem. Phys. 58, 5017–5023

    Article  ADS  Google Scholar 

  8. K. Heinzinger (1985), ‘Computer Simulations of Aqueous Electrolyte Solutions’, Physica 131B, 196–216

    Google Scholar 

  9. E. W. Lang, H.-D.Lüdemann, L. Piculell (1984),’Nuclear Magnetic Relaxation Rate Dispersion in Supercooled Heavy Water Under High Pressure’, J. Chem. Phys. 81, 3820–3827

    Article  ADS  Google Scholar 

  10. P. L. Cummins, G. B. Bacskay, N. S. Hush, S. Engström, B. Halle (1985),‘The Effect of Intermolecular Interactions on the 2H and 17O Quadrupolar Coupling Constants in Ice and Liquid Water’, J. Chem. Phys. 82, 2002–2013

    Article  ADS  Google Scholar 

  11. C. A. Angell (1988), ‘Perspectives on the Glass Transition’,J. Phys. Chem.Solids 49, 863–871

    Article  ADS  Google Scholar 

  12. see paper by E.W. Lang, H.-D. Lüdemann, this volume

    Google Scholar 

  13. J. Jäckie (1986), ‘Models of the Glass Transition’, Rep. Prog. Phys. 49, 171–231

    Article  Google Scholar 

  14. D. W. James, R. F. Armishaw (1975), ‘Structure of Aqueous Solutions of Monovalent Halides’, Aust. J. Chem. 28, 1179–1186

    Article  Google Scholar 

  15. W. Fink, E. W. Lang (1988), ‘Pressure, Temperature and Composition Dependence of Deuterium Spin-Lattice Relaxation Times in Undercooled MgCl2/D2O Solutions’, J. Phys. Chem.92, 6440–6445

    Article  Google Scholar 

  16. W. Fink, H. Radkowitsch, E. W. Lang (1988), ‘p, T, c-Dependence of Deuterium Spin-Lattice Relaxation Times in Undercooled NaCl/D20 and NaJ/D2O Solutions’, Chem. Phys. 124, 239–249

    Article  ADS  Google Scholar 

  17. W. Fink, H. Radkowitsch, E. W. Lang (1988), ‘Deuterium Spin-Lattice Relaxation Times in Undercooled Aqueous Potassium and Cesium Halide Solutions’, Z. Naturforsch. 43a, 538–546

    Google Scholar 

  18. E. W.Lang, F. X.Prielmeier (1988), ‘Multi-Nuclear Spin-Lattice Relaxation Time Studies of Supercooled Aqueous LiCl Solutions’, Ber. Bunsenges. Phys. Chem. 92, 717–724

    Google Scholar 

  19. H. G. Hertz, G. Keller, H. Versmold (1969), ‘Molecular Motions in the Hydration Sphere of the F Ion in Aqueous Solution’, Ber. Bunsenges. Phys. Chem. 73, 549–62

    Google Scholar 

  20. K. J. Müller, H. G. Hertz (1984), ‘Experimental Proof that Water Arrangement in the Hydration Sphere of F is Symmetric’, Z. Phys. Chem. Neue Folge 140, 31–54

    Article  Google Scholar 

  21. R. Ahlrichs, H.-J. Böhm, H. G. Hertz, K. J. Müller (1984), ‘The Hydration of F: An Explicit Demonstration of a Basic Discrepancy Between NMR Results and Those Obtained From Various Computations and Neutron Diffraction Experiments’, Z, Phys. Chem. Neue Folge 142, 67–80

    Article  Google Scholar 

  22. R. W. Impey, P. A. Madden, I. R. McDonald (1983), ‘Hydration and Mobility of Ions in Solution’, J. Phys. Chem. 87, 5071–5083

    Article  Google Scholar 

  23. H. Radkowitsch, E. W. Lang, ‘Hydration Water Dynamics in Undercooled Aqueous KF Solutions’, in preparation

    Google Scholar 

  24. H. Weingärtner (1980), ‘The Mechanism of 7Li Relaxation in a Supercooled Aqueous LiI Solution’, J. Magn. Reson. 41, 74–87

    ADS  Google Scholar 

  25. H. Kanno, I. Shirotani, Sh. Minomura (1980), ‘Isotope Effect of the Glass Transition Temperature of Aqueous Solutions. LiCl and ZnCl2 Solutions in Water and D2O’ Bull. Chem. Soc. Jpn. 53, 2079–2080

    Article  Google Scholar 

  26. I. C. Baianu, N. Boden, D. Lightowler, M. Mortimer (1978), ‘A New Approach to the Structure of Concentrated Aqueous Electrolyte Solutions Using Pulsed NMR Methods’, Chem. Phys. Lett. 54, 169–175

    Article  ADS  Google Scholar 

  27. N. Boden, M.Mortimer (1978), ‘Reorientation of D20 in Concentrated Aqueous Solutions of Lithium Chloride Studied by Nuclear Magnetic Relaxation’, J. Chem. Soc. Faraday Trans. II 74, 353–366

    Article  Google Scholar 

  28. W. Faber, P. Heitjans, A. Schirmer (1988), ‘β-NMR on LiC1·7D20 in the Glassy and the Liquid State’, Proceedings of the ILL-Workshop ‘Dynamics of Disordered Materials’, in print

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lang, E.W., Fink, W., Radkowitsch, H. (1991). Multi-Nuclear Relaxation Time Studies in Undercooled Aqueous Electrolytes. In: Dore, J.C., Teixeira, J. (eds) Hydrogen-Bonded Liquids. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3274-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3274-9_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5445-4

  • Online ISBN: 978-94-011-3274-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics