Skip to main content

The properties of hydrogen bonded liquids studied by high pressure NMR

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 329))

Abstract

The translational self diffusion coefficients D of a series of simple liquids and supercooled water obtained in a wide temperature range and at pressures up to 400 MPa are given. The model descriptions published for the ϱ,T-dependence of D are tested with these data. With spin lattice relaxation time (T1) measurements of the protons, deuterons and oxygen-17 nuclei in neat emulsified supercooled water as function of frequency models for the rotational mobility of water are evaluated. The anomalous temperature dependence of D and T1 at p ⩽ 150 MPa is discussed. The deuteron-T1 measurements have been extended to supercooled aqueous alkali and alkali earth halide emulsions. A simple two state model for the description of the temperature and concentration dependence of the deuteron-T1 in these solutions is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kanno, R.J. Speedy, C.A. Angell (1975), Supercooling of Water to −92°C Under Pressure, Science 189, 880–881

    Article  ADS  Google Scholar 

  2. C.A. Angell, H. Kanno (1976), Density Maxima in High-Pressure Supercooled Water and Liquid Silicon Dioxide, Science 193, 1121–1122

    Article  ADS  Google Scholar 

  3. D.H. Rasmussen, A.P. McKenzie (1972), Effects of Solute on Ice-Solution Interfacial Free Energy; Calculation from Measured Homogeneous Nucleation Temperatures. In: H.H. Jellinek (ed.) ‘Water Structure and the Water Polymer Interface’, Plenum Press New York, 126–145

    Chapter  Google Scholar 

  4. E.W. Lang, H.-D. Lüdemann (1980), Pressure and Temperature Dependence of the Longitudinal Deuterium Relaxation Rates in Supercooled Heavy Water to 300 MPa and 190 K, Ber. Bunsenges. Phys. Chem. 84, 462–470

    Article  Google Scholar 

  5. E.W. Lang, H.-D. Lüdemann (1977), Pressure and Temperature Dependence of the Longitudinal Proton Relaxation Times in Supercooled Water to −87°C and 2500 bar, J. Chem. Phys. 67, 718–723

    Article  ADS  Google Scholar 

  6. E.W. Lang, H.-D. Lüdemann, L. Piculell (1984), Nuclear Magnetic Relaxation Rate Dispersion in Supercooled Heavy Water under High Pressure, J. Chem. Phys. 81, 3820–3827

    Article  ADS  Google Scholar 

  7. E.W. Lang, H.-D. Lüdemann (1985), p,T,c-Dependence of 2H Spin-Lattice-Relaxation Rates in Supercooled LiCl-D2O Solutions, 508–516

    Google Scholar 

  8. W. Fink, E.W. Lang (1988), The p,T,c-Dependence of Deuterium Spin-Lattice Relaxation Times in Uhdercooled MgCl2/D2O Solution, J. Phys. Chem., 92, 6440–6445

    Article  Google Scholar 

  9. W. Fink, H. Radkowitsch, E.W. Lang (1988), The p,T,c-Dependence of Deuterium Spin-Lattice Relaxation Times in Undercooled NaCl/D2O Solutions, Chem. Phys., 124, 239–249

    Article  ADS  Google Scholar 

  10. E. Lang, H.-D. Lüdemann (1981), High Pressure 0–17 Longitudinal Relaxation Time Studies in Supercooled H2O and D2O, Ber. Bunsenges. Phys. Chem. 85, 603–611

    Article  Google Scholar 

  11. T.C. Farrar, E.D. Becker (1971), Pulse and FTNMR-Introduction to Theory and Methods, Academic Press, New York

    Google Scholar 

  12. H.W. Spiess (1978), Rotation of Molecules and Nuclear Spin Relaxation. In: P. Diehl, E. Fluck, R. Kosfeld eds. ‘NMR-Basic Principles and Progress’, Springer, Berlin 15, 55–214

    Google Scholar 

  13. J. McConnell (1987), The Theory of Nuclear Magnetic Relaxation in Liquids, Cambridge University Press, Cambridge

    Google Scholar 

  14. E.L. Hahn (1950), Spin Echoes, Phys. Rev. 80, 580–594

    Article  ADS  MATH  Google Scholar 

  15. H.J.V. Tyrrell, K.R. Harris (1984), Diffusion in Liquids, Butter-worth, London

    Google Scholar 

  16. F.X. Prielmeier, E.W. Lang, R. J. Speedy, H.-D. Lüdemann (1987), Diffusion in Supercooled Water to 300 MPa, Phys. Rev. Lett. 59, 1128–1131

    Article  ADS  Google Scholar 

  17. F.X. Prielmeier, E.W. Lang, R.J. Speedy, H.-D. Lüdemann (1988), The Pressure Dependence of Self-Diffusion in Supercooled Light and Heavy Water, Ber. Bunsenges. Phys. Chem., 92 1111–1117

    Google Scholar 

  18. C.A. Angell (1982), Supercooled Water. In: F. Franks ed. ‘Water - A Comprehensive Treatise’, Plenum Press, New York 7, 1–81

    Google Scholar 

  19. E.W. Lang, H.-D. Lüdemann (1982), Anomalien des flüssigen Wassers, Angew. Chemie 94, 351–365

    Article  Google Scholar 

  20. E.W. Lang, H.-D. Lüdemann (1982), Anomalien des flüssigen Wassers I. Ed. 21, 315–329

    Google Scholar 

  21. C.A. Angell (1983), Supercooled Water, Ann. Rev. Phys. Chem., 34, 593–630

    Article  ADS  Google Scholar 

  22. W. Fink (1987), Dissertation, Universität Regensburg

    Google Scholar 

  23. G. B. Benedek (1963), Magnetic Resonance at High Pressure, Wiley Interscience, New York

    Google Scholar 

  24. J. Jonas (1978), Magnetic Resonance Spectroscopy at High Pressure. In: H. Kelm ed. ‘High Pressure Chemistry’, D. Reidel, Dordrecht, 65–110

    Google Scholar 

  25. W.L. Earl, H. Vanni, A.E. Merbach (1978), A High Pressure Probe for High Resolution Nuclear Magnetic Resonance, J. Magnet. Res. 30, 571–576

    ADS  Google Scholar 

  26. H. Yamada (1974), Pressure Resisting Glass Cell for High Pressure High Resolution NMR Measurements, Rev. Sci. Instr. 45, 640–642

    Article  ADS  Google Scholar 

  27. E.O. Stejskal, J.E. Tanner (1965), Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-dependent Field Gradient, J. Chem. Phys. 42, 288–292

    Article  ADS  Google Scholar 

  28. R. Mills (1973), Self-Diffusion in Normal and Heavy Water in the Range 1–45°, J. Phys. Chem., 77, 685–689

    Article  Google Scholar 

  29. M. Weingärtner (1982), Self Diffusion in Liquid Water. A Reassessment. Z. Phys. Chem., Neue Folge 132, 129–149

    Article  Google Scholar 

  30. U. Gaarz, H.-D. Lüdemann (1976), Pressure Dependence of the Self Association of 9–Methylpurine in Aqueous Solution, Ber. Bunsenges. Phys. Chem., 80, 607–614

    Article  Google Scholar 

  31. G. Völkel, E.W. Lang, H.-D. Lüdemann (1979), High Pressure High Resolution NMR III: Concentration Dependence of ΔV* and ΔG* for the Rotation of the Dimethylaminogroup in Aqueous Solutions of some N,N-Dimethylamides, Ber. Bunsenges. Phys. Chem., 83, 722–729

    Article  Google Scholar 

  32. J.D. Weeks, D. Chandler, H.C. Andersen (1971), Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids, J. Chem. Phys. 54, 5237–5247

    Article  ADS  Google Scholar 

  33. J. H. Dymond (1985), Hard-sphere Theories of Transport Properties, Chem. Soc. Rev. 14, 317–356

    Article  Google Scholar 

  34. R.J. Speedy (1987), Diffusion in the Hard Sphere Fluid, Mol. Phys. 62, 509–515

    Article  ADS  Google Scholar 

  35. D. Chandler (1974), Translational and Rotational Diffusion in Liquids I. Translational single-particle correlation functions. J. Chem. Phys. 60, 3500–3507

    Article  ADS  Google Scholar 

  36. D. Chandler (1975), Rough Hard Sphere Theory of the Self-Diffusion Constant for Molecular Liquids, J. Chem. Phys. 62, 1358–1363

    Article  ADS  Google Scholar 

  37. R.J. Speedy, F.X. Prielmeier, T. Vardag, E.W. Lang, H.-D. Lüdemann (1989), Diffusion in Simple Fluids, Mol. Phys., 66, 577–590

    Article  ADS  Google Scholar 

  38. C.A. Angell (1988), Perspectives on the Glass Transition, J. Phys. Chem. Solids 49, 863–871

    Article  ADS  Google Scholar 

  39. E.W. Lang, F.X. Prielmeier, H. Radkowitsch, H.-D. Lüdemann (1987), High Pressure NMR Study of the Molecular Dynamics of Liquid Methyl-fluoride and Deutero-Methylfluoride, Ber. Bunsenges. Phys. Chem., 91, 1017–1025

    Google Scholar 

  40. E.W. Lang, F.X. Prielmeier, H. Radkowitsch, H.-D. Lüdemann (1987), High Pressure NMR Study of the Molecular Dynamics of Liquid Fluoro-form and Deutero-Fluoroform, Ber. Bunsenges. Phys. Chem., 91, 1025–1033

    Google Scholar 

  41. F.X. Prielmeier, H.-D. Lüdemann (1986), Density Dependence of the Molecular Dynamics of CH3Cl, CH2Cl2 and CHCl3, Mol. Phys. 58, 593–604

    Article  ADS  Google Scholar 

  42. T.M. Vardag, H.-D. Lüdemann (1988), High Pressure NMR Study of the Molecular Dynamics of Liquid Chlorodifluoromethane, Chem. Phys. 128, 527–535

    Article  ADS  Google Scholar 

  43. R.L. Hurle, L.A. Woolf (1982), Tracer Diffusion in Methanol and Acetonitrile under Pressure. J. Chem. Soc. Faraday Trans. I. 78, 2921–2928.

    Article  Google Scholar 

  44. H.S. Sandhu (1975), Coefficient of Self Diffusion in Liquids Using Pulsed NMR Techniques, J. Magn. Res. 17, 34–40

    ADS  Google Scholar 

  45. N. Karger, T. Vardag, Regensburg, unpublished results

    Google Scholar 

  46. K.R. Harris, L.A. Woolf (1980), Pressure and Temperature Dependence of the Self-Diffusion Coefficient of Water and Oxygen-18 Water, J. Chem. Soc. Faraday Trans I, 76, 377–385

    Article  Google Scholar 

  47. K. Krynicki, C.D. Green, D.W. Sawyer (1980), Pressure and Temperature Dependence of Self Diffusion in Water, Faraday Discussion Chem. Soc, 66, 199–208

    Google Scholar 

  48. M. Has (1988), Diplomarbeit, Universität Regensburg

    Google Scholar 

  49. D.J. Wilbur, J. De Fries, J. Jonas (1976), Self-Diffusion in Compressed Liquid Heavy Water, J. Chem. Phys. 65, 1783–1786

    Article  ADS  Google Scholar 

  50. R.L. Hurle, A.J. Esteal, L.A. Woolf (1985), Self Diffusion in Monohydric Alcohols under Pressure, J. Chem. Soc. Faraday Trans. I, 81, 769–779

    Article  Google Scholar 

  51. J. Jonas, A. Akai (1977), Transport Processes in Compressed Liquid Methanol, J. Chem. Phys. 66, 4946–4950

    Article  ADS  Google Scholar 

  52. M. Woznyj, F.X. Prielmeier, H.-D. Lüdemann (1984), Pressure Dependence of the Melting and Self Diffusion in 2,2-Dimethylpropane, 2,2-Dimethylpropionitrile and 2–Methylpropanol-2, Z. Naturforsch. 39a, 800–806

    ADS  Google Scholar 

  53. J. Speedy, C.A. Angell (1976), Isothermal Compressibility of Supercooled Water and Evidence for a Thermodynamic Singularity at −45°C, J. Chem. Phys. 65, 851–858

    Article  ADS  Google Scholar 

  54. D. Girlich (1988), Diplomarbeit, Universität Regensburg

    Google Scholar 

  55. R.J. Speedy (1982), Stability Limit Conjecture. An Interpretation of the Properties of Water, J. Phys. Chem. 86, 982–991

    Article  Google Scholar 

  56. C.A. Angell (1988), Supercooled Water - Approaching the Limits, Nature 331, 206–207

    Article  ADS  Google Scholar 

  57. C.A. Angell, E.J. Sare (1970), Glass-Forming Composition Regions and Glass Transition Temperatures for Aqueous Electrolyte Solutions, J. Chem. Phys. 52, 1058–1068.

    Article  ADS  Google Scholar 

  58. H. Kanno, C.A. Angell (1977), Homogeneous Nucleation and Glass Formation in Aqueous Alkali Halide Solutions at High Pressure, J. Phys. Chem., 81, 2639–2643

    Article  Google Scholar 

  59. H. Kanno, J. Shirotani, S. Minomura (1981), Pressure Dependence and Cationic Radius Effect of the Glass Transition Temperature in Aqueous Alkali Acetate Solutions, Bull. Chem. Soc. Jpn, 54, 2607–2609

    Article  Google Scholar 

  60. C.A. Angell, E.J. Sare, J. Donnella, D.R. MacFarlane (1981), Homogeneous Nucleation and Glass Transition Temperatures in Solutions of Li-Salts in D2O and H2O. Doubly Unstable Glass Regions, J. Phys. Chem., 85, 1461–1464

    Article  Google Scholar 

  61. E.J. Sutter, J.F. Harmon (1975), Molecular Motion in Supercooled Liquids. I. Pulsed Nuclear Magnetic Resonance of Lithium-7 in 11 M Aqueous Lithium Chloride, J. Phys. Chem., 79, 1958–1961

    Article  Google Scholar 

  62. J.F. Harmon, E.J. Sutter (1978), Molecular Motion in Supercooled Liquids. II. Nuclear Magnetic Resonance Relaxation of Deuterons and Protons in 11 M Aqueous Lithium Chloride, J. Phys. Chem., 82, 1938–1942

    Article  Google Scholar 

  63. N. Boden, M. Mortimer (1978), Reorientation of D2O in Concentrated Aqueous Solutions of Lithium Chloride Studied by Nuclear Magnetic Relaxation, J. Chem. Soc. Faraday Trans. II, 74, 353–366

    Article  Google Scholar 

  64. A. Geiger, H. G. Hertz (1976), Proton Magnetic Relaxation Study of Water Orientation Around I- and Li+, J. Solution Chem. 5, 365–388

    Article  Google Scholar 

  65. H. Weingärtner (1980), The Mechanism of 7Li Relaxation in a Supercooled Aqueous LiI Solution, J. Magn. Res. 41, 74–87.

    ADS  Google Scholar 

  66. E.W. Lang, W. Fink, H.-D. Lüdemann (1984), The p,T,c-Dependence of Deuterium Spin-Lattice Relaxation Rates in Supercooled LiCl-, NaCl-and MgCl2−D2O Solutions, J. Physique 45, C7–173–177

    Google Scholar 

  67. E.W. Lang, L. Piculell (1986). New Results of High-Pressure NMR Studies on Supercooled Water and Aqueous Electrolyte Solutions. In: ‘Water and Aqueous Solutions’, G. W. Neilson, J. E. Enderby eds., Hilger, Bristol 31–40

    Google Scholar 

  68. E.W. Lang, F.X. Prielmeier (1988), Multinuclear Spin-Lattice Relaxation Time Studies of Supercooled Aqueous LiCl-Solutions, Ber. Bunsenges. Phys. Chem., 92, 717–724

    Google Scholar 

  69. W. Fink, H. Radkowitsch, E.W. Lang (1988), Deuteron Spin-Lattice Relaxation Times in Undercooled Aqueous Potassium- and Cesium-Halide Solutions, Z. Naturforsch. 43a, 538–546

    Google Scholar 

  70. M. N. Buslaeva, O.Ya. Samoilov (1986), Microdynamics of Solvation in E. Kalman, A.A. Kornyschev, J. Ulstrup eds. ‘Studies in Physical and Theoretical Chemistry’, Elsevier, Amsterdam, 391–414

    Google Scholar 

  71. G. Engel, H. G. Hertz (1968), On the Negative Hydration. A Nuclear Magnetic Relaxation Study, Ber. Bunsenges. Phys. Chem., 72, 808–834

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lang, E.W., Lüdemann, HD. (1991). The properties of hydrogen bonded liquids studied by high pressure NMR. In: Dore, J.C., Teixeira, J. (eds) Hydrogen-Bonded Liquids. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3274-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3274-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5445-4

  • Online ISBN: 978-94-011-3274-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics