Skip to main content

A Model for Hydrogen-Bonding Effects at Aqueous Interfaces

  • Chapter
  • 198 Accesses

Part of the book series: NATO ASI Series ((ASIC,volume 329))

Abstract

An attempt is made to derive a model for thermodynamic properties of water and water mixtures that incorporates the effect of strong orientation dependent hydrogen bonding interactions in the mean-field approximation. The theoretical analysis presented permits us to describe the physically important features of the liquid/vapour interfaces of aqueous mixtures with the aid of four phenomenological parameters, E11, E12 and ΔS11, ΔS12, determined in bulk solution. The parameters E11 and E12 are the energies of hydrogen bond formation between water molecules or water molecules and a second component. ΔS11 and ΔS12 are corresponding entropies of bond formation. The theory provides relations for the contribution of hydrogen bonding to bulk and surface equilibrium properties: surface free energy of water, excess energies and free energies of mixing and excess surface free energy of the mixture. An accurate description of experimental data for the system water-dimethylsulphoxide is obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luzar, A., Svetina, S., and Zeks, B. (1983) ‘The contribution of hydrogen bonds to the surface tension of water’, Chem. Phys. Letters 96, 485–490.

    Article  ADS  Google Scholar 

  2. Luzar, A., Svetina, S., and Zeks, B. (1985) ‘Consideration of the spontaneous polarization of water at the solid/liquid interface’, J. Chem. Phys. 82, 5146–5154.

    Article  ADS  Google Scholar 

  3. Luzar, A. (1987) ‘A simple approach to hydrogen bond effects in Me SO-water mixtures’, Period, biol. 89, 349–351.

    Google Scholar 

  4. Luzar, A. (1987) ‘Thermodynamics of DMSO hydration’, in H. Kleeberg (ed.), Interactions of Water in Ionic and Nonionic Hydrates, Springer-Verlag, Berlin, Heidelberg, pp. 125–129.

    Chapter  Google Scholar 

  5. Luzar, A. (1989) ‘The contribution of hydrogen bonds to bulk and surface thermodynamic properties of dimethylsulfoxide-water mixtures’, J. Chem. Phys. 91, in press.

    Google Scholar 

  6. For an excellent review on this subject see: Evans, E. ‘Microscopic theories of simple fluids and their interfaces’, in J. Charvolin and J. F. Joanny (eds.), NATO ASI Series volume on Liquids at Interfaces, Les Houches, France, 1988.

    Google Scholar 

  7. Davis, C. M. and Jarzynski, J. (1972) ‘Mixture models of water’, in A. Horne (ed.), Water and Aqueous Solutions, Wiley, New York, pp. 377–423.

    Google Scholar 

  8. Kell, G. S. (1972) ‘Continuum theories of liquid water’, in A. Horne (ed.), Water and Aqueous Solutions, Wiley, New York, pp. 331–376.

    Google Scholar 

  9. Rice, S. A. and Screats, M. (1981) ‘A random network model for water’, J. Phys. Chem. 85, 1108–1119.

    Article  Google Scholar 

  10. Angell, C. A. (1971) ‘Two-state thermodynamics and transport properties for water as zeroth-order results of a “Bond Lattice Model1”’, J. Phys. Chem. 75, 3698–3705.

    Article  Google Scholar 

  11. Luck, W. A. P. (1967) ‘Spectroscopic studies concerning the structure and thermodynamic behaviour of H2O, CH3OH and C5H5OH’, Discuss. Faraday Soc. 43, 115–132.

    Article  Google Scholar 

  12. Walrafen, G. E. (1971) ‘Raman and infrared spectral investigations of water structure in water’, in F. Frank (ed.), Water, A Comprehensive Treatise, Plenum, New York, vol. 1, pp. 151–214.

    Google Scholar 

  13. Walrafen, G. E., Hokmabedi, M. S., and Yang, W. H. (1986) ‘Raman isosbestic points from liquid water’, J. Chem. Phys. 85, 6964–6969.

    Article  ADS  Google Scholar 

  14. Stanley, H. E., Blumberg, R. L., Geiger, A., Mausbach, P., and Teixeira, J. (1984) ‘The “locally-structured transient gel” model of water structure’ J. de Physique C7, 3–12.

    Google Scholar 

  15. Lee, C. Y., McCammon, J. A., and Rossky, P. J. (1984) ‘The structure of liquid water at an extended hydrophobic surface’, J. Chem. Phys. 80, 4448–4455.

    Article  ADS  Google Scholar 

  16. Marcelja, S., Mitchell, D. J., and Ninham, B. W. (1977) ‘Role of solvent structure in solution theory’, J. Chem. Soc. Faraday Trans. II 73, 630–648.

    Google Scholar 

  17. Adamson, A. W. (1982) Physical Chemistry of Surfaces, Wiley, New York, 4th edition.

    Google Scholar 

  18. Martin, D., Weise, A., and Niclas, H. J. (1967) ‘Dimethylsulfoxide’, Angew. Chem. 6, 318–334.

    Article  Google Scholar 

  19. For a review on this subject see: (1975) ‘Biological Actions of dimethylsulfoxide’, Ann. N. Y. Acad. Sci. 243.

    Google Scholar 

  20. Cowie, J. M. G. and Toporowski, P. M. (1964) ‘Association in the binary liquid system dimethylsulfoxide-water’, Can. J. Chem. 39, 2240–2243.

    Article  Google Scholar 

  21. Clever, H. L. and Pigott, S. P. (1971) ‘Enthalpies of mixing of dimethlysulfoxide with water and with several ketones at 298.15 K’, J. Chem. Thermodynamics 3, 221–225.

    Article  Google Scholar 

  22. Kenttamaa, J. and Lindberg, J. J. (1960) ‘The thermodynamic excess functions of the system Dimethylsulphoxide-water’, Suomen Kemistilehti B33, 89–100.

    Google Scholar 

  23. Horrocks, W. D.JR and Cotton, F. A. (1961) Infrared and Raman spectra and normal co-ordinate analysis of dimethylsulfoxide and dimethyl sulfoxide-d6’, Spectrochim. Acta 17, 134–147.

    Article  ADS  Google Scholar 

  24. de Visser, C., Heuvelsland, W. J. M., Dunn, L. A., and Sumsen, G. (1978) ‘Some properties of binary aquoeus liquid mixtures’,Chem. Soc. Faraday Trans.I 74, 1159–1169.

    Article  Google Scholar 

  25. Tommila, E. and Pajunen, A. (1969) ‘The dielectric constant and surface tensions of dimethylsulfoxide-water mixtures’, Suomen Kemistilehti B41, 172–176.

    Google Scholar 

  26. Borstnik, B., Janezic, D., and Azman, A. (1979) ‘Surface tension of water. The Fowler model’, Z. Naturforsch. 34, 1239–1242.

    ADS  Google Scholar 

  27. Lee, C. Y. and Scott, H. L. (1980) ‘The surface tension of water: a Monte Carlo calculation using an umbrella sampling algorithm’, J. Chem. Phys. 73, 4591–4596.

    Article  ADS  Google Scholar 

  28. Wilson, M. A., Pohorille, A., and Pratt, L. R. (1988) ‘Surface potential of the water liquid-vapour interface’, J. Chem. Phys. 88, 3281–3285.

    Article  ADS  Google Scholar 

  29. Heizinger, K., Palinkas, G. (1985) ‘Computer simulation of ion-solvent systems’, in R. R. Dogonadze, E. Kaiman, A. Kornyshev, J. Ulstrup (eds.), The Chemical Physics of Solvation, Part A, Theory of Solvation, Elsevier, Amsterdam, pp. 313–353.

    Google Scholar 

  30. Finney, J. L. (1982) ‘Towards a molecular picture of liquid water’, in F. Franks (ed.), Biophysics of Water, Wiley, New York, pp. 73–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Luzar, A. (1991). A Model for Hydrogen-Bonding Effects at Aqueous Interfaces. In: Dore, J.C., Teixeira, J. (eds) Hydrogen-Bonded Liquids. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3274-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3274-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5445-4

  • Online ISBN: 978-94-011-3274-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics