Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 196))

  • 1038 Accesses

Abstract

Spouted beds are excellent media for heat and mass transfer applications particularly in industrial and agricultural drying operations. The hydrodynamic behaviour of the spouting gas and the particles in the spout and annulus regions are quite complex and in order to investigate the heat and mass transfer mechanism, a good understanding of the bed hydrodynamics is a must. In this study, fundamentals of the spouted beds are given and a computer program which was developed to determine spout hydrodynamics is explained. Mickley-Fairbanks’ Packet theory was adopted for the bed to wall heat transfer mechanism in the annulus region. Other numerical solutions which are available in the literature are also cited. In the last section, theory of mass transfer with main emphasis to drying is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mathur K.B. and Gishler P.E. (1955) A study of the application of the Spouted Bed technique to wheat drying, J. Appl. Chem. 5, 624.

    Article  Google Scholar 

  2. Mathur K.B. and Gishler P.E., (1988) Advanced Atmospheric Fluidized Bed Combustion Design-Spouted Bed, Final Report to U. S. D. O. E.,Under control no: DE-AC21-84MC21172, by Battelle Columbus, Ohio, Morgontown Energy Technology Center, W.V.

    Google Scholar 

  3. Kilkiş B. (1988) Gas-Solid Heat Exchangers in: Two Phase Flow Heat Exchangers: Thermal Hydraulic Fundamentals and Design, NATO ASI Series, Series E, Vol 143, p. 993, Kluwer Academic Publishers, Amsterdam.

    Chapter  Google Scholar 

  4. Foong S.K., Lim C.J., and Watkinson A.P. (1980) Can. J. Chem. Eng. 58, 84.

    Article  Google Scholar 

  5. Mathur K. B., Epstein N. (1974) Spouted Beds, Academic Press, London.

    Google Scholar 

  6. Heertjes P.M., Khoe G.K. (1980) Flow Patterns and Dynamics in Spouted Beds, Industriele Technology, p. 217, Amsterdam.

    Google Scholar 

  7. Mathur K.B. and Lim C.J. (1974) Vapor Phase Chemical Reaction in Spouted Beds-A Theoretical Model. Chem. Eng. Sci, 29, 789.

    Article  Google Scholar 

  8. Piccini N., Grace J. R., and Mathur K.B. (1979) Chem. Eng. Sci, 34, 1257.

    Article  Google Scholar 

  9. Smith K.J., Arkun Y., and Littman H. (1982) Studies on modelling and Control of Spouted Bed Reactors-1, Chem. Eng. Sci, 37, 4, 567.

    Article  Google Scholar 

  10. Scheidegger, A.E. (1974) The Physics of Flow Through Porous Media, University of Toronto Press.

    Google Scholar 

  11. Verruijt A. (1970) Theory of Ground Water Flow, Mc Millan, London.

    Google Scholar 

  12. Lefroy G.A., Davidson J.F. (1969) The Mechanics of Spouted Beds, Trans. Inst. Chem. Engrs., 47, p. 120.

    Google Scholar 

  13. Asenjo J.A., Munoz R., and Pyle D. L. (1977) On the Transition from a Fixed to a Spouted Bed, Chem. Eng. Sci, 32, p. 109.

    Article  Google Scholar 

  14. Khoe G.K. (1982) Mechanics of Spouted Beds, Ph. D. Dissertation, Delft, Holland.

    Google Scholar 

  15. Kilkiş, B., Dündar K. (1989) Mathematical Modelling of Spouted Bed Hydrodynamics and Numerical Solution in: Multiphase Transport and Particulate Phenomena, 3, p.295, Hemisphere Pub. Co., London.

    Google Scholar 

  16. Kilkiş B., Dündar K. (1990) Prediction of the Vessel Wall to Bed Heat Transfer in Spouted Beds, Paper to be presented at: 6th Int. Symp. on Heat and Mass Transfer, Miami, USA.

    Google Scholar 

  17. Volpicelli G. (1963) Gas-Solid Systems with Pulsating Feed, Chem. Ind., Milan, 45, p. 1362.

    Google Scholar 

  18. Lefroy G.A., Davidson J.F. (1969) Mechanics of Spouted Beds, Trans. Inst. Chem. Engrs., 47, p. 120.

    Google Scholar 

  19. Ergun S. (1952). Fluid Flow Through Packed Columns, Chem. Eng. Prog., 48, 2, p.89.

    Google Scholar 

  20. Momuro T., Hattori H. (1968) Flow Patterns of Fluid in Spouted Beds, J. Chem. Eng., Jap., 1, 1.

    Article  Google Scholar 

  21. Dündar K., Kilkiş B. (1983) Numerical Analysis of Spouted-Bed Hydrodynamics, The Canadian J. of Chem. Eng., 61, p.293.

    Google Scholar 

  22. Becker H.A. (1961) An Investigation of Laws Governing the Spouting of Coarse Particles, Chem. Eng. Sci., 13, p.245.

    Article  Google Scholar 

  23. Shigeo N. (1965) Particle Behaviour in Spouted Beds, Thesis, Hokkaido Univ., Sapporo, Japan.

    Google Scholar 

  24. Rowe P.N., Claxton K.T. (1965) Heat and Mass Transfer from a Single Sphere to Fluid Flowing Through an Array, Trans. Inst. Chem. Engrs., 43, p.321.

    Google Scholar 

  25. Littman H., Sliva D.E. (1971) Gas Particle Heat Transfer Coefficients in Packed Beds at Low Reynold’s Number, Heat Transfer 1970, Paris, Elsevier, Amsterdam, 7, CT.14.

    Google Scholar 

  26. Mickley H.S., Fairbanks D.F. (1955) Mechanism of Heat Transfer to Fluidized Beds, AIChE J., 1, 3, p.374.

    Article  Google Scholar 

  27. Kilkiş B. (1986) Calculation of Local Bed to Wall Heat Transfer in a Fluidized Bed, Particulate Phenomena and Multiphase Transport, Vol.5, pp.435–455, Hemisphere Pub. Co., London.

    Google Scholar 

  28. Yagi S., Kunii D. (1957) Studies on Heat Transfer Near Wall Surface in Packed Beds, AIChE J., 3, 3, p.373.

    Article  Google Scholar 

  29. Yagi S., Kunii D. (1960) Studies on Heat Transfer Near Wall Surface in Packed Beds, AIChE J., 6, 1, p.97.

    Article  Google Scholar 

  30. Ranz W. E. (1952) Friction and Transfer Coefficients for Single Particles and Packed Beds, Chem. Eng. Pub., 48, p.5.

    Google Scholar 

  31. Dixon A.G. (1985) Thermal Resistance Models of Packed Bed Effective Heat Transfer Parameters, AIChE J., 31, p.5.

    Article  Google Scholar 

  32. Kondukov L.I., and et. al. (1974) Inv. on Hydrodynamics of Fl. Bed as on Component Determining Heat and Mass Transfer, 5th Int. H. T. Conf., Soc. of Chem. Eng., p.54, Tokyo.

    Google Scholar 

  33. Zabrodsky S.S., and Mikhailik V.D. (1967) The Heat Exchange of the Spouting Bed With a Submerged Heating Surface, Nauka, Teknika BSSR, p. 130, Minsk.

    Google Scholar 

  34. Becker H.A., and Salions H.R. (1961) On the Continuous Moisture Diffusion-Controlled Drying of Solid Particles in a Well-mixed Isothermal Bed, Chem. Eng. Sci., 13, p.97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

KilkiŞ, B., Kakaç, S. (1991). Heat and Mass Transfer in Spouted Beds. In: Kakaç, S., Kilkiş, B., Kulacki, F.A., Arinç, F. (eds) Convective Heat and Mass Transfer in Porous Media. NATO ASI Series, vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3220-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3220-6_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5419-5

  • Online ISBN: 978-94-011-3220-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics