Skip to main content

Non Invasive Measurement Techniques in Porous Media

Christiansen effect Nuclear Magnetic Resonance (N.M.R)-Magnetic Resonance Imaging (M.R.I)

  • Chapter
Convective Heat and Mass Transfer in Porous Media

Part of the book series: NATO ASI Series ((NSSE,volume 196))

Abstract

The presence of multiple physical phases in porous media gives rise to a number of challenging theoretical and experimental problems. From experimental point of view, these problems lie in the difficulty of making and interpreting measurements because many experimental methods, disturb or destroy the samples under measurement. In the paper we present some applications of two non-invasive techniques: Christiansen Effect and NMR-MRI to the study of Natural Convection and Multiphase Flows in Porous Media. The first technique, based on the relative variations of the optical indexes of the solid phase and of the fluid phase with the temperature, is applied to the visualization and the measurement of two dimensional thermal fields of Natural Convection in saturated porous media. The second, based on the decay or relaxation of the magnetization of the 1H proton, as a function of time, is applied to the study of the structure of porous materials and to the visualization of multiphase flows. In the two cases the physical basis of phenomena involved in the measurement techniques are previously described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CHRISTIANSEN C.: Untersuchungen uber die optichen eigenschaften von fein vertheilten körpern. Ann. Phys., 23, 298–306, 1884.

    Article  Google Scholar 

  2. RAMAN C.V.: The theory of the Christiansen experiment, Proc. Indiana Acad. Sc., 29, 381–390, 1949.

    Google Scholar 

  3. SCHRADER: Zur Theorie der Dispersion Filter (Christiansen-Farbfilter). Optik, 15, 265–274, 1958.

    Google Scholar 

  4. CLARKE R.H.: A theory for the Christiansen filter, Appl. Opt., 7, 861–867, 1968.

    Article  ADS  Google Scholar 

  5. FEJER J.A.: The diffraction of waves in passing through an irregular refracting medium, Proc. Royal Society, 455–471, 1956.

    Google Scholar 

  6. BRAMLEY E.N.: The diffraction of waves by an irregular refracting medium, Proc. Royal Society, 515–518, 1959.

    Google Scholar 

  7. DENMARK H.S., CADY W.M.: Optimum grain size in the Christiansen filter, J. Opt. Soc. Amer, vol 25, 330–331, 1935.

    Article  ADS  Google Scholar 

  8. KLARSFELD S.: Etude de la convection naturelle dans les milieux poreux, Thèse de Doctorat, Faculté des Sciences de Paris, 1970.

    Google Scholar 

  9. CLOUPEAU M., KLARSFELDS.: Visualization of thermal fields in satured porous media by Christiansen effect, Applied Optics, vol 12, 198–204, 1973.

    Article  ADS  Google Scholar 

  10. CHARRIER-MOJTABI M.C.: Stability analysis of multicellular free convection flows in an annular porous layer, International Forum Mathematical Modelling of Processus in Energy Systems. Sarajevo, Yugoslavia, Mars 1989.

    Google Scholar 

  11. HOLLARD S.: Application de l’effet Christiansen à l’étude de la thermoconvection en milieu poreux; cas de la couche plane bidimensionnelle non uniformément chauffée et cas d’une cellule inclinée, Thèse de Doctorat, Institut National Polytechnique, Toulouse 1985.

    Google Scholar 

  12. TIMUR A.: Pulsed nuclear magnetic resonance studies of porosity movable fluid and permeability of sandstones, J. Pet. Tech. 246, 775–786, 1969.

    Google Scholar 

  13. ROBINSON J.D. et al.: Determining residual oil with the nuclear magnetism log., J. Pet. Techn. 257, 226–236, 1974.

    Google Scholar 

  14. ROTHWEL W.P.: VINEGAR H.J., Petrophysical applications of NMR Imaging, Applied Optics 24, 3969–3972, 1985.

    Article  ADS  Google Scholar 

  15. VINEGAR H.J.: X-ray CT and NMR imaging of rocks, J. Pet. Techn. 38, 257–259, 1986.

    Google Scholar 

  16. LIPSICAS M., BANAVAR J.R., WILLEMSEM J.: Surface relaxation and pore sizes in rocks-A Nuclear Magnetic Resonance Analysis, Appl. Phys. Lett. 48, 1986.

    Google Scholar 

  17. KENYON W.E., DAY P.I., STRALEY C.: Compact and consistent representation of rock N.M.R. data for permeability estimation, S.P.E. 15643, 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, LA, 1986.

    Google Scholar 

  18. SCHWARTZ L.M., BANAVAR J.R.: Probing porous media with Nuclear Magnetic Resonance Molecular dynamics in restricted geometries, Edited by Joseph KLAPTER and J.M. DRAKE, 1989.

    Google Scholar 

  19. CHEN J.D., DIAS M.M., PATZ S., SCHWARTZ L.M.: Magnetic resonance imaging in immiscible fluid displacement in porous media, Phys. Rev. Letter 61, 1489–1492, 1988.

    Article  ADS  Google Scholar 

  20. EDELSTEIN W.A., VINESAR J.J., TUTUNJIAN P.N.: NMR Imaging for core analysis, S.P.E. 18272, 63rd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Houston, TX, 1988.

    Google Scholar 

  21. MANEVAL J.E., Mc CARTHY M.J., WHITAKER S.: Use of NMR as an experimental probe in multiphase systems-Determination of the instrument weight function for porosity submitted to Water Resources Research, 1989.

    Google Scholar 

  22. LAMROUS O., HOUI D., ZARCONE C., PRADERE J.: Magnetic resonance imaging to study of porous media, Revue Phys. Appl. 24, 607–612, 1989.

    Article  Google Scholar 

  23. HOUI D., ZARCONE C., SCHMITZ P.: Visualizations of microfiltration processes, 5th World Filtration Congress, Nice, France, 1990.

    Google Scholar 

  24. SAUZADE M., GUILLOT G.: Performances and limits of Magnetic Resonance Imaging, Fundamentals of Fluid Transport in Porous Media, 5th IFP Research Conference, Arles, France, 1990.

    Google Scholar 

  25. GUILLOT G., COEUR-JOLY O. et al: Applications of NMR Imaging to the study of liquids in porous media, Fundamentals of Fluid Transport in Porous Media, 5th IFP Research Conferences, Arles, France, 1990.

    Google Scholar 

  26. ROUSSEL J.C., CHARDAIRE C.: The use of high magnetic field to visualize fluids in porous media by M.R.I., 5th I.F.P. Research Conference, Arles, France, 1990.

    Google Scholar 

  27. PEREZ E., KAUTEN R., Mc CARTHY M.J.: Non invasise measurement of moisture profiles during the drying of an apple, DRYING’89, Hemisphere Publishing Co. 1990.

    Google Scholar 

  28. RAYNAUD P.G., CHARDAIRE C., BORIES S.: NMRSI and porous media: a relaxation time study, 5th IFP Research Conference, Arles, France, 1990.

    Google Scholar 

  29. ABRAGAN A.: The principles of magnetic resonance, Clarendon Press, Oxford, 1961.

    Google Scholar 

  30. LE BIHAN D.: Imagerie par résonance magnétique, Masson, Paris, 1986.

    Google Scholar 

  31. MARTIN M.R., MARTIN G.J., DELPUECH J.J.: Practical NMR Spectroscopy, Heyden London, 1980.

    Google Scholar 

  32. PACKER K.J.: The dynamics of water in heterogeneous systems, Phil. Trans. R. Soc. Lond., B 278, 59–87, 1977.

    Article  ADS  Google Scholar 

  33. BITTOUN J.: Un simulateur numerique d’imagerie par résonance magnétique nucléaire-Conception et applications, Thèse de Doctorat d’Etat, Université de Paris-Sud, Centre d’Orsay, 1987.

    Google Scholar 

  34. CYNTHIA E., WILLIAMS E., FUNG B., J. of Magn. Res., 50, 71–80, 1982.

    Google Scholar 

  35. HALL L., RAJANAYAGAN V.: J. of Magn. Res., 74, 139–146, 1987.

    Google Scholar 

  36. SCHMITZ P., GOUVERNEUR C., HOUI D., MADIANOS M.: Theoretical model at pore scale for particle deposition on a crossflow microfiltration membrane, 5th World Filtration Congress, Vol. 1, 571–578, Nice, France, 1990.

    Google Scholar 

  37. SCHMITZ P.: Mécanismes d’interaction: hydrodynamique et agrégation dans la formation du dépôt en filtration tangentielle, Thèse Institut National Polytechnique, Toulouse, 9 Mai 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bories, S.A., Charrier-Mojtabi, M.C., Houi, D., Raynaud, P.G. (1991). Non Invasive Measurement Techniques in Porous Media. In: Kakaç, S., Kilkiş, B., Kulacki, F.A., Arinç, F. (eds) Convective Heat and Mass Transfer in Porous Media. NATO ASI Series, vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3220-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3220-6_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5419-5

  • Online ISBN: 978-94-011-3220-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics