Factor Analysis and Risk Perception

  • J. P. Pages
  • J. Brenot
  • M. H. Barny
Part of the Eurocourses: Chemical and Environmental Science book series (EUCE, volume 2)


Factorial methods are used by scientists to study statistical relationships between many variables. Among these methods, Principal Component Analysis (PCA) has a major importance because it allows to describe simultaneously two sets, one of individuals and the other of variables, which constitute respectively the lines and the columns of a data array “individuals x variables”. As output, a geometric description is given where individuals and variables appear as points in vector subspaces, and then an analysis based on visualization may follow. PCA is a corner stone technique because many factorial methods can be considered as application of PCA to particular sets of data with particular choices for measuring distances between individuals and the intensity of the relationship between variables.


Principal Component Analysis Risk Perception Public Opinion Data Array Canonical Correlation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agorametrie (1985–1989). Les structures de l’opinion, Rapports annuels de l’Association publiés de 1985 à 1988.Google Scholar
  2. Agresti A. (1976). J.A.S.A. 71, 353, 49.Google Scholar
  3. Anastassakos I., Gaussens E. (1983). Statistique et analyse des données 8, 3, 1. Anderson T.W. ( 1958 ). An introduction to multivariate analysis. Wiley.Google Scholar
  4. Anderson T.W. ( 1958 ). An introduction to multivariate analysis. Wiley.Google Scholar
  5. Barny M.H., Brenot J., Dos Santos J., Pages J.P. (1990). Perception des risques majeurs dans la population bordelaise et chez les experts. Note SEGP/LSEES/90–17, Paris.Google Scholar
  6. Brenot J. and Pages J.P. (1986). Clefs CEA 2.Google Scholar
  7. Cailliez F. and Pages J.P. (1976). Introduction à l’analyse des données, SMASH, Paris.Google Scholar
  8. Charbonnier G. (1961). Entretiens avec Levi-Strauss, 10/18, Plon, Paris.Google Scholar
  9. Eckart C.,Young G. (1936). Psychometrika 1, 211.CrossRefGoogle Scholar
  10. Durand J., Pagès J.P., Brenot J., Barny M.H. (1990). Inter. Journal of Public Opinion Research, 2, 1, 30.CrossRefGoogle Scholar
  11. Farr R.M (1978). Social Science Information 17, 4–5, 503.Google Scholar
  12. Girard R. (1972). La violence et le sacré, Grasset, Paris.Google Scholar
  13. Glenn N.D. (1977). Cohort analysis, Sage publications.Google Scholar
  14. Hotelling H. (1933). J. Educ. Psychol. 24, 6, 417 and 498.CrossRefGoogle Scholar
  15. Hotelling H. (1936). Biometrika 28, 321.Google Scholar
  16. Iliakopoulos A. (1988). Etude de l’opinion et enquêtes de référence. Aspects théoriques, méthodologiques et informatiques, Thèse, Université de Paris-Dauphine.Google Scholar
  17. Kaiser H.J. (1958). Psychometrika, 23, 187.CrossRefGoogle Scholar
  18. Mead G.H. (1934). Mind, self and society: from the standpoint of a social behaviorist, Chicago, III, University of Chicago Press.Google Scholar
  19. Pearson K. (1904). Phil. Mag. Ser. 6, 11, 559.Google Scholar
  20. Spearman C. (1904). American Journal of Psychology 15, 201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • J. P. Pages
    • 1
  • J. Brenot
    • 1
  • M. H. Barny
    • 1
  1. 1.Commissariat à l’Energie AtomiqueIPSNFontenay-aux-Roses CedexFrance

Personalised recommendations