Interpretation of Hierarchical Clustering

Part of the Eurocourses: Chemical and Environmental Science book series (EUCE, volume 2)


This paper deals with several questions which may arise in the user’s mind when using hierarchical cluster analysis. Having obtained a dendrogram from his or her data, the user would often like to have some help: if the dendrogram shows clear cut groups, he or she would like to know which variables are responsible for the existence of these groups, or which values of the variables are characteristic of the various groups. Another interesting matter would be : how well does the dendrogram fit the initial data ?


Hierarchical Cluster Analysis Initial Distance Maximum Likelihood EstImators Photobacterium Phosphoreum Gamma Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey T.A. and Dubes R.C. (1982). Pattern Recognition, 15(2), 61.CrossRefGoogle Scholar
  2. Bock H.H. (1985). J. of Classification, 2, 77.CrossRefGoogle Scholar
  3. Degens P.O. (1983). Hierarchical cluster methods as Maximum Likelihood Estimators. In Felsenstein J., Numerical Taxonomy, NATO ASI Series, Springer-Verlag, Berlin Heidelberg, pp 249–253.Google Scholar
  4. Dubes R.C. and Jain A.K. (1988). Algorithms for clustering data. Prentice Hall, Englewood Cliff N.J.Google Scholar
  5. Fitch W.M. and Margoliash E. (1967). Science, 155, 279.Google Scholar
  6. Gordon A.D. (1987). J.R. Statist. Soc., A 150, (Part 2), 119.Google Scholar
  7. Hubert L.J. (1974). J. Amer. Stat. Association, 69, 698.CrossRefGoogle Scholar
  8. Jardine N. and Sibson R. (1968). Computer J. 11, 177.CrossRefGoogle Scholar
  9. Kruskal J.B. (1964). Psychometrika, 29, 1.CrossRefGoogle Scholar
  10. Lerman I.C. (1970). Les bases de la Classification automatique. Gauthier-Villars, Paris.Google Scholar
  11. Perruchet C. (1983). Statistique et Analyse des Données, 8, 18.Google Scholar
  12. Roux M. (1991). Basic procedures in hierarchical cluster analysis. In Devillers J. and Karcher W. (Eds), Applied Multivariate Analysis in SAR and Environmental Studies, Kluwer Academic Publishers, Dordrecht.Google Scholar
  13. Sloof W., Canton J.H. and Hermens J.L.M. (1983). Aquatic Toxicology, 4, 113.CrossRefGoogle Scholar
  14. Sokal R.R. and Rholf (1962). Taxon, 11, 33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • M. Roux
    • 1
  1. 1.Faculté des Sciences de St-JéromeService 462Marseille Cedex 13France

Personalised recommendations