Skip to main content

Habitat structure and community dynamics in marine benthic systems

  • Chapter
Habitat Structure

Part of the book series: Population and Community Biology Series ((PCBS,volume 8))

Abstract

Animals and plants of the marine benthos depend on their substrata for attachment, on surfaces or within sediments, and for access to a source of prey and nutrients. In the case of sessile species, the two-dimensional surface is a primary resource for which individuals and colonies of many species potentially compete. However, substratum is not as simple a resource as one might expect. Even solid rock surfaces are usually dissected by small to large crevices, have different orientations with respect to each other and to water flow, and are often made of varied rock types. Soft substrata can be extremely diverse, consisting of both organic and inorganic materials differing in grain sizes and in chemical composition. These materials are further modified through the activities of the residents themselves, adding organic material, aggregating particles and sometimes changing the nature of the substratum so much that other species can be totally excluded. On hard substrata, biogenic effects can also be extremely important. These include the provision of secondary substratum through growth processes and calcium carbonate deposition, and the addition of physical relief that affects water flow and thus the transport of resources and propagules within the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R. C. (1982) The effects of macrobenthos on chemical properties of marine sediment and overlying water. In Animal Sediment Relations (eds P. L. McCall and J. J. S. Tvesz), Plenum, New York, pp. 53–101.

    Google Scholar 

  • Allmon, R. A. and Sebens, K. P. (1988) Feeding biology and ecological impact of an introduced nudibranch, Tritonia plebeia, New England, USA. Mar. Biol., 99, 375–85.

    Article  Google Scholar 

  • Armstrong, R. A. (1976) Fugitive species: experiments with fungi and some theoretical considerations. Ecology, 57, 953–63.

    Article  Google Scholar 

  • Bell, S. S. and Woodin, S. A. (1984) Community unity in soft bottom benthos: experimental evidence from a sand flat in Virginia, USA. J. Mar. Res., 42, 605–32.

    Article  Google Scholar 

  • Brenchley, G. A. (1976) Predator detection and avoidance: ornamentation of tube-caps of Diopatra spp. (Polychaeta: Onuphidae). Mar. Biol., 38, 179–88.

    Article  Google Scholar 

  • Brenchley, G. A. (1981) Disturbance and community structure: an experimental approach. J. Mar. Res., 39, 767–90.

    Google Scholar 

  • Buss, L. W. (1979) Bryozoan overgrowth interactions — the interdependence of competition for space and food. Nature, 251, 475–7.

    Article  Google Scholar 

  • Buss, L. W. and Jackson, J. B. C. (1979) Competitive networks: Non-transitive competitive relationships in cryptic coral reef environments. Am. Nat., 113, 223–34.

    Article  Google Scholar 

  • Connell, J. H. (1978) Diversity in tropical rain forests and coral reefs. Science, 1, 1302–9.

    Article  Google Scholar 

  • Connell, J. H. and Keough, M. J. (1985) Disturbance and patch dynamics of subtidal marine animals on hard substrata. In The Ecology of Natural Disturbance and Patch Dynamics (eds S.T.A. Pickett and P.S. White), Academic Press, New York, pp. 125–52.

    Google Scholar 

  • Connell, J. H. and Slatyer, R. O. (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat., 111, 1119–44.

    Article  Google Scholar 

  • Connell, J. H. and Sousa, W. P. (1983) On the evidence needed to judge ecological stability or persistence. Am. Nat., 121, 789–824.

    Article  Google Scholar 

  • Dahl, AL. L. (1973) Surface area in ecological analysis: quantification of benthic coral-reef algae. Mar. Biol., 23, 239–49.

    Article  Google Scholar 

  • Dayton, P. K. (1971) Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr., 41, 351–89.

    Article  Google Scholar 

  • Dayton, P. K. (1973) Dispersion, dispersal and persistence of the annual intertidal alga, Postelsia palmaeformis Ruprecht. Ecology, 54, 433–8.

    Article  Google Scholar 

  • Dayton, P. K. (1975) Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol. Monogr., 45, 137–59.

    Article  Google Scholar 

  • Dayton, P. K. (1984) Processes structuring ecological communities: are they general? In Ecological Communities: Conceptual Issues and the Evidence (eds D. R. Strong, Jr, D. Simberloff, L. Abele and A. B. Thistle), Princeton University Press, Princeton, NJ, pp. 181–97.

    Google Scholar 

  • Dayton, P. K. (1985) Ecology of kelp communities. Ann. Rev. Ecol. Syst., 16, 215–45.

    Article  Google Scholar 

  • Dean, R. L. and Connell, J. H. (1987) Marine invertebrates in an algal succession. III. Mechanisms linking habitat complexity with diversity. J. Exp. Mar. Biol. Ecol., 109, 249–73.

    Article  Google Scholar 

  • De Angelis, P. L. and Waterhouse, J. C. (1987) Equilibrium and nonequilibrium concepts in ecological models. Ecol. Monogr., 57, 1–21.

    Article  Google Scholar 

  • Denny, M. W., Daniel, T. L. and Koehl, M. A. R. (1985) Mechanical limits of size in wave-swept organisms. Ecol. Monogr., 55, 89–102.

    Article  Google Scholar 

  • Dethier, M. (1984) Disturbance and recovery in intertidal pools: maintenance of mosaic patterns. Ecol. Monogr., 54, 99–118.

    Article  Google Scholar 

  • Duggins, D.O. (1988) The effects of kelp forests on nearshore environments. In The Community Ecology of Sea Otters (eds G. R. Van Blaricom and J. A. Estes), Springer Verlag, Berlin, pp. 192–201.

    Chapter  Google Scholar 

  • Ebeling, A. W. and Laur, D. R. (1988) Fish populations in kelp forests without sea otters: effects of severe storm damage and destructive sea urchin grazing. In The Community Ecology of Sea Otters (eds G. R. Van Blaricom and J. A. Estes), Springer Verlag, Berlin, pp. 169–91.

    Chapter  Google Scholar 

  • Eckman, J. E. (1979) Small-scale patterns and processes in a soft substrate intertidal community. J. Mar. Res., 37, 437–57.

    Google Scholar 

  • Eckman, J. E. (1983) Hydrodynamic processes affecting benthic recruitment. Limnol. Oceanogr., 28, 241–57.

    Article  Google Scholar 

  • Eckman, J. E., Nowell, A. R. M. and Jumars, P.A. (1981) Sediment destabilization by animal tubes. J. Mar. Res., 39, 361–74.

    Google Scholar 

  • Gaines, S. and Roughgarden, J. (1987) Kelp communities: recruitment filters for intertidal communities. Science, 235, 397.

    Article  Google Scholar 

  • Gallagher, E. D., Jumars, P. A. and Trueblood, D. D. (1983) Facilitation of soft-bottom benthic succession by tube builders. Ecology, 64, 1200–16.

    Article  Google Scholar 

  • Harlin, M. M. and Lindbergh, J. M. (1977) Selection of substrata by seaweeds: optimal surface relief. Mar. Biol., 40, 33–40.

    Article  Google Scholar 

  • Hastings, A. (1980) Disturbance, coexistence, history and competition for space. Theor. Pop. Biol., 18, 363–73.

    Article  Google Scholar 

  • Highsmith, R. C. (1982) Induced settlement and metamorphosis of sand dollar (Dendraster excentricus) larvae in predator-free sites; adult sand dollar beds. Ecology, 63, 329–37.

    Article  Google Scholar 

  • Horn, H. S. and MacArthur, R. H. (1972) Competition among fugitive species in a harlequin environment. Ecology, 5, 749–52.

    Article  Google Scholar 

  • Huffaker, B. B. (1958) Experimental studies on predation: dispersion factors and predator/prey oscillations. Hilgardia, 27, 343–83.

    Google Scholar 

  • Huston, M. (1979) A general hypothesis of species diversity. Am. Nat., 113, 81–101.

    Article  Google Scholar 

  • Jackson, J. B. C. (1977) Habitat area, colonization and development of epibenthic community structure. Proceedings of the 11th European Marine Biology Symposium. Pergamon, Oxford.

    Google Scholar 

  • Keough, M. J. (1983) Patterns of recruitment of sessile invertebrates in two subtidal habitats. J. Exp. Mar. Biol. Ecol., 66, 213–45.

    Article  Google Scholar 

  • Laur, D. R., Ebeling, A. W. and Reed, D. C. (1986) Environmental evaluations of substrate types as barriers to sea urchin (Strongylocentrotus spp.) movement. Mar. Biol., 93, 209–15.

    Article  Google Scholar 

  • Levin, S. A. and Paine, R. T. (1974) Disturbance patch formation and community structure. Proc. Natl Acad. Sci. USA, 71, 2744–7.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J. R. (1964) The Ecology of Rocky Shores. English University Press, London.

    Google Scholar 

  • Lubchenco, J. L. (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive ability. Am. Nat., 111, 23–39.

    Article  Google Scholar 

  • Menge, B. A. and Lubchenco, J. (1981) Community organization in temperate and tropical rocky intertidal habitats: prey refuges in relation to consumer pressure gradients. Ecol. Monogr., 51, 429–50.

    Article  Google Scholar 

  • Meyers, M. B., Fossing, M. and Powell, E. N. (1987) Microdistribution of interstitial meiofauna, oxygen and sulfide gradients, and the tubes of macro-infauna. Mar. Ecol. Progr. Ser., 35, 223–41.

    Article  Google Scholar 

  • Nerini, M. K. and Oliver, J. S. (1983) Gray whales and the structure of the Bering Sea benthos. Oecologia, 59, 224–5.

    Article  Google Scholar 

  • Norton, T. A. (1983) The resistance to dislodgment of Sargassum muticum germlings under defined hydrodynamic conditions. J. Mar. Biol. Assoc. UK, 61, 181–93.

    Article  Google Scholar 

  • Norton, T. A. and Fetter, R. (1981) The settlement of Sargassum muticum propagules in stationary and flowing water. J. Mar. Biol. Assoc. UK, 61, 929–40.

    Article  Google Scholar 

  • Oliver, J. S., Slattery, P. N., Silberstein, M. A. and O’Connor, E. F. (1983) Gray whale feeding on dense ampeliscid amphipod communities near Bamfield, British Columbia. Can. J. Zool., 62, 41–9.

    Article  Google Scholar 

  • Osman, R. W. (1977) The establishment and development of a marine epifaunal community. Ecol. Monogr., 47, 37–63.

    Article  Google Scholar 

  • Paine, R. T. and Levin, S. A. (1981) Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr., 51, 145–78.

    Article  Google Scholar 

  • Paine, R. T. and Suchanek, T. H. (1983) Consequence of ecological processes between independently evolved community dominants: a tunicate-mussel comparison. Evolution, 37, 821–31.

    Article  Google Scholar 

  • Peterson, C. H. (1979) Predation, competitive exclusion and diversity in the soft-sediment benthic communities of estuaries and lagoons. In Ecological Processes in Coastal and Marine Systems (ed. R. J. Livingston), Plenum Press, New York, pp. 233–64.

    Chapter  Google Scholar 

  • Peterson, C. H. and Black, R. G. (1988) Density dependent mortality caused by physical stress interacting with biotic history. Am. Nat., 113, 257–70.

    Article  Google Scholar 

  • Reise, K. (1985) Predator control in marine tidal sediments. In Proc. 19th Eur. Marine Biol. Symp., Plymouth, UK (ed. P. E. Gibbs), pp. 311–21.

    Google Scholar 

  • Reise, K. (1987) Spatial niches and long-term performance in meiobenthic Platyhelminthes of an intertidal lugworm flat. Mar. Ecol. Prog. Ser., 38, 1–11.

    Article  Google Scholar 

  • Rhoads, D. C., McCall, P.L. and Yingst, J. Y. (1978) Disturbance and production on the estuarine seafloor. Am. Sci., 66, 577–85.

    Google Scholar 

  • Rhoads, D. C. and Young, D. K. (1970) The influence of deposit feeding organisms on sediment stability and community trophic structure. J. Mar. Res., 2, 150–78.

    Google Scholar 

  • Sebens, K. P. (1983) Larval and juvenile ecology of the temperate octocoral Alcyonium siderium Verrill. II. Fecundity, survivorship, and juvenile growth. J. Exp. Mar. Biol. Ecol., 72, 263–85.

    Article  Google Scholar 

  • Sebens, K. P. (1984) Water flow and coral colony size: interhabitat comparisons of the octocoral Alcyonium siderium. PNAS, 81, 5473–7.

    Article  CAS  Google Scholar 

  • Sebens, K. P. (1985) Community ecology of vertical rock walls in the Gulf of Maine, USA: small-scale processes and alternate community states. In The Ecology of Rocky Coasts (eds P. G. Moore and R. Seed), Chapter 23, Hodder and Stoughton, Sevenoaks, UK.

    Google Scholar 

  • Sebens, K. P. (1986) Spatial relationships among encrusting marine organisms in the New England subtidal zone. Ecol. Monogr., 56, 73–96.

    Article  Google Scholar 

  • Sebens, K. P. (1988) Competition for space: effects of disturbance and indeterminate competitive success. Theor. Pop. Biol., 32, 430–41.

    Article  Google Scholar 

  • Sousa, W. P. (1979) Disturbance in marine intertidal boulder fields the nonequilibrium maintenance of species diversity. Ecology, 60, 1225–40.

    Article  Google Scholar 

  • Sousa, W. P. (1984) The role of disturbance in natural communities. Ann. Rev. Ecol. Syst., 15, 353–91.

    Article  Google Scholar 

  • Sousa, W. P. (1985) Disturbance and patch dynamics on rocky intertidal shores. In The Ecology of Natural Disturbance and Patch Dynamics (eds S. T. A. Pickett and P. S. White), Academic Press, New York, pp. 101–24.

    Google Scholar 

  • Suchanek, T. H. (1979) The Mytilus californianus community: studies on the composition, structure, organization and dynamics of a mussel bed. PhD thesis. University of Washington.

    Google Scholar 

  • Suchanek, T. H. (1981) The role of disturbance in the evolution of life history strategies in the intertidal mussels Mytilus edulis and Mytilus californianus. Oecologia, 50, 143–52.

    Article  Google Scholar 

  • Sutherland, J. P. (1974) Multiple stable points in natural communities. Am. Nat., 108, 859–73.

    Article  Google Scholar 

  • Sutherland, J. P. (1981) The fouling community at Beaufort, North Carolina: A study in stability. Am. Nat., 118, 499–517.

    Article  Google Scholar 

  • Thistle, D. (1980) The response of a harpacticoid copepod community to a small scale natural disturbance. J. Mar. Res., 38, 381–95.

    Google Scholar 

  • Vance, R. R. (1979) Effects of grazing by the sea urchin, Centrostephanus coronatus, on prey community composition. Ecology, 60, 537–46.

    Article  Google Scholar 

  • Virnstein, R. W. (1977) The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology, 50, 1199–217.

    Article  Google Scholar 

  • Wethey, D.S. (1984) Effects of crowding on fecundity in barnacles: Semibalanus (Balanus) balanoides, Balanus glandula and Cthamalus dalli. Can. J. Zool., 62, 1788–95.

    Article  Google Scholar 

  • Wilson, W. H. Jr (1979) Community structure and species diversity of the sedimentary reefs constructed by Petaloproctus socialis (Polychaeta: Maldanidae). J. Mar. Res., 37, 623–41.

    Google Scholar 

  • Wilson, W. H. Jr (1983) The role of density dependence in a marine infaunal community. Ecology, 64, 295–306.

    Article  Google Scholar 

  • Wilson, W. H. Jr (1984) An experimental analysis of spatial competition in a dense infaunal community: the importance of relative effects. Estuarine, Coastal Shelf Sci., 18, 673–84.

    Article  Google Scholar 

  • Witman, J. D. (1985) Refuges, biological disturbance and rocky subtidal community structure in New England. Ecol. Monogr., 55, 421–55.

    Article  Google Scholar 

  • Witman, J. D. (1987) Subtidal coexistence: storms, grazing, mutualism and the zonation of kelps and mussels. Ecol. Monogr., 57, 167–87.

    Article  Google Scholar 

  • Woodin, S. A. (1974) Polychaete abundance patterns in a marine soft sediment environment: the importance of biological interactions. Ecol. Monogr., 44, 171–87.

    Article  Google Scholar 

  • Woodin, S. A. (1976) Adult-larval interactions in dense infaunal assemblages: patterns of abundance. J. Mar. Res., 34, 23–41.

    Google Scholar 

  • Woodin, S. A. (1978) Refuges, disturbance, and community structure: a marine soft-bottom example. Ecology, 59, 274–84.

    Article  Google Scholar 

  • Woodin, S. A. (1981) Disturbance and community structure in a shallow water sand flat. Ecology, 62, 1052–66.

    Article  Google Scholar 

  • Yodzis, P. (1978) Competition for Space and the Structure of Ecological Communities. Springer-Verlag, Berlin and New York.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sebens, K.P. (1991). Habitat structure and community dynamics in marine benthic systems. In: Bell, S.S., McCoy, E.D., Mushinsky, H.R. (eds) Habitat Structure. Population and Community Biology Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3076-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3076-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5363-1

  • Online ISBN: 978-94-011-3076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics