Skip to main content

One-dimensional models for plane and non-plane power-law flow in shortening and elongating thrust zones

  • Chapter
Thrust Tectonics

Abstract

The movement of a thrust sheet, even in external parts of fold-thrust belts, occurs by deforming rocks within a zone of finite thickness. A significant fraction of thrust-zone strains may accrue slowly as viscous deformation. This contribution uses a simple one-dimensional model of power-law flow to analyse the viscous deformation in thrust zones. The model generates profiles of stress and velocity for plane and non-plane flows that shorten or elongate during shearing. These stress and velocity profiles are, in essence,’ snapshots’ of stresses and velocities in real thrust zones that sequentially shorten and elongate during thrust emplacement. A comparison of stress and velocity solutions for flows with different stress exponents gives a way to examine structural settings where a single weak layer develops and affects stresses throughout the sheet. Using data on the orientations of stress principal directions during episodes of shortening and elongation derived from the mesoscopic fault array in an external thrust zone from the southern Appalachian fold-thrust belt, the plane-flow solution suggests that differential stresses in the thrust zone did not exceed 20 MPa. Moreover, body forces due to the dipping upper surface of the sheet were apparently not the primary source of the tractions during thrust zone shortening or elongation episodes. The additional tractions that other portions of the thrust sheet exerted on this thrust-zone segment had comparable magnitudes during shortening and elongation episodes. Comparing plane and non-plane solutions indicates that (1) shearing may localize at shallower depths or occur with different orientations for principal stresses relative to the thrust-zone boundaries, and (2) shortening or elongation may occur at smaller magnitudes of in-transport compression or tension, in non-plane structural settings like the growing tips of thrusts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arboleya, M. L. 1989. Fault rocks of the Esla Thrust (Cantabrian Mountains, N Spain — an example of foliated cataclasites. Annates Tectonicae, 3, 99–109.

    Google Scholar 

  • Beach, A. 1982. Deformation mechanisms in some cover thrust sheets from the external French Alps. Journal of Structural Geology, 4, 137–149.

    Article  Google Scholar 

  • Bentley, C. R. 1987. Antarctic Ice streams: A review. Journal of Geophysical Research, 92, 8843–8858.

    Article  Google Scholar 

  • Bielenstein, H. U. 1969. The Rundle thrust sheet, Banff, Alberta. Ph.D. Dissertation, Queen’s University, Kingston, Ontario.

    Google Scholar 

  • Bombolakis, E. G. 1989. Thrust fault mechanics and dynamics during a developmental stage of a foreland belt. Journal of Structural Geology, 11, 439–456.

    Article  Google Scholar 

  • Chapple, W. M. 1978. Mechanics of thin-skinned fold and thrust belts. Geological Society of America Bulletin, 89, 1189–1198.

    Article  Google Scholar 

  • Coward, M. P. 1982. Surge zones in the Moine thrust zone of NW Scotland. Journal of Structural Geology, 4, 247–256.

    Article  Google Scholar 

  • Crossland, A. & Wojtal, S. 1989. Rheological implications of intragranularfractures in cataclasites from foreland fold-thrust belt thrusts (abst.). Program of the Geological Society of America, 21, A135.

    Google Scholar 

  • Davis, D., Suppe, J. & Dahlen, F. A. 1983. Mechanics of fold and thrust belts and accretionary wedges. Journal of Geophysical Research, 88, 1153–1172.

    Article  Google Scholar 

  • Elliott, D. 1973. Diffusion flow laws in metamorphic rocks. Geological Society of America Bulletin, 84, 2645–2664.

    Article  Google Scholar 

  • Elliott, D. 1976a. The motion of thrust sheets. Journal of Geophysical Research, 81, 949–963.

    Article  Google Scholar 

  • Elliott, D. 1976b. The energy balance and deformation mechanisms of thrust sheets. Philosophical Transactions of the Royal Society of London, A283, 289–312.

    Google Scholar 

  • Emerman, S. H. & Turcotte, D. L. 1983. A fluid model for the shape of accretionary wedges. Earth and Planetary Science Letters, 63, 379–384.

    Article  Google Scholar 

  • Engelder, J. T. 1974. Cataclasis and the generation of fault gouge. Geological Society of America Bulletin, 85, 1515–1522.

    Article  Google Scholar 

  • Erickson, S. G. & Wiltschko, D. V. 1986. Analytical models of an asperity on a thrust surface (abst.). Program of the Geological Society of America, 18, 595.

    Google Scholar 

  • Fletcher, R. C. 1989. Approximate analytical solutions for a cohesive fold-and-thrust wedge: Some results for lateral variation in wedge properties and for fine wedge angle. Journal of Geophysical Research, 94, 10,347–10,354.

    Google Scholar 

  • Geiser, P. A. 1988. The role of kinematics in the construction and analysis of geological cross sections in deformed terranes. In: Mitra, G. & Wojtal, S. (eds) Geometries and mechanisms of thrusting, with special reference to the Appalachians. Special Paper of the Geological Society of America, 222, 47–77.

    Google Scholar 

  • Gilotti, J. & Kumpulainen, R. 1986. Strain-softening induced ductile flow in the Sarv thrust sheet, Scandinavian Caledonides. Journal of Structural Geology, 8, 44–56.

    Article  Google Scholar 

  • Harris, L. D. & Milici, R. C. 1977. Characteristics of thin-skinned style of deformation in the southern Appalachians, and potential hydrocarbon traps. Professional Paper US Geological Survey 1018.

    Google Scholar 

  • House, W. M. & Gray, D. R. 1982. Cataclasites along the Saltville thrust, USA and their implications for thrust-sheet emplacement. Journal of Structural Geology, 4, 257–269.

    Article  Google Scholar 

  • Hsu, K. 1969. A preliminary analysis of the statics and kinetics of the Glarus overthrust. Eclogae Geologicae Helvetiae, 62, 143–154.

    Google Scholar 

  • Hubbert, M. K. & Rubey, W. W. 1959. Role of fluid pressure in mechanics of overthrust faulting. Geological Society of America Bulletin, 70, 115–166.

    Article  Google Scholar 

  • Hudleston, P. J. 1991. A comparison between glacial movement and thrust sheet or nappe emplacement and associated structures. In: Mitra, S. & Fisher, G. W. (eds) Structural Geology of Fold and Thrust Belts (Elliott Volume). Johns Hopkins University Press, Baltimore (in press).

    Google Scholar 

  • Kehle, R. O. 1970. Analysis of gravity sliding and orogenic translation. Geological Society of America Bulletin, 81, 1641–1664.

    Article  Google Scholar 

  • Logan, J. M., Higgs, N. G. & Friedman, M. 1981 Laboratory studies on natural gouge from the US Geological Survey Dry Lake Valley No. 1 well, San Andreas fault zone. American Geophysical Union of Geophysics Monograph, 24, 121–134.

    Article  Google Scholar 

  • MacAyeal, D. R. 1989a. Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream B, Antarctica. Journal of Geophysical Research, 94, 4071–4087.

    Article  Google Scholar 

  • MacAyeal, D. R. 1989b. Ice-shelf response to Ice-stream discharge fluctuations: III. The effects of Ice-stream imbalance on the Ross Ice Shelf, Antarctica. Journal of Glaciology, 35, 38–42.

    Article  Google Scholar 

  • MacAyeal, D. R., Bindschadler, R. A., Jezek, K. C. & Shabtaie, S. 1988. Can relict crevasse plumes on Antarctic ice shelves reveal a history of ice-stream fluctuation? Annals glaciology, 11, 77–82.

    Google Scholar 

  • Marshall, D. J. 1988. Cathodolumine scence of geological materials. Unwin Hyman, Boston.

    Google Scholar 

  • Mitra, G. 1984. Brittle to ductile transition due to large strains along the White Rock thrust, Wind River Mountains, Wyoming. Journal of Structural Geology, 6, 51–61.

    Article  Google Scholar 

  • Mitra, G. & Elliott, D. 1980. Deformation of basement in the Blue Ridge and the development of the South Mountain cleavage. In: Wones, D. R. (ed.) The Caledonides in the USA. Department of Geological Sciences Virginia Polytechnic Institute and State University Memoirs, 2, 307–311.

    Google Scholar 

  • Mitra, S. 1986. Duplex structures and imbricate thrust systems: Geometry, structural position, and hydrocarbon potential. Bulletin of the American Association of Petroleum Geologists, 70, 1087–1112.

    Google Scholar 

  • Mullenax, A. C. & Gray, D. R. 1984. Interaction of bed-parallel stylolites and extension veins in boudinage. Journal of Structural Geology, 6, 63–72.

    Article  Google Scholar 

  • Murphy, D. C. 1987. Suprastructure/infrastructure transition, east-central Cariboo Mountains, British Columbia: geometry, kinematics, and tectonic implications. Journal of Structural Geology, 9, 13–29.

    Article  Google Scholar 

  • Nye, J. F. 1957. The distribution of stress and velocity in glaciers and ice sheets. Proceedings of the Royal Society of London, A239, 113–133.

    Google Scholar 

  • O’Hara, K., Hower, J. C. & Rimmer, S. M. 1990. Constraints on the emplacement and uplift history of the Pine Mountain thrust sheet, eastern Kentucky: Evidence from coal rank trends. Journal of Geology, 98,43–51.

    Article  Google Scholar 

  • Paterson, W. S. B. 1981. The physics of glaciers. 2nd ed. Pergamon Press, Oxford.

    Google Scholar 

  • Piatt, J. P. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geological Society of America Bulletin, 97, 1037–1053.

    Article  Google Scholar 

  • Piatt, J. P. & Leggett, J. K. 1986. Stratal extension in thrust footwalls, Makran accretionary prism: implications for thrust tectonics. Bulletin of the American Association of Petroleum Geologists, 70, 191–203.

    Google Scholar 

  • Piatt, J. P., Leggett, J. K. & Alam, S. 1987. Slip vectors and fault mechanics in the Makran accretionary wedge, southwest Pakistan. Journal of Geophysical Research, 93, 7955–7973.

    Google Scholar 

  • Price, R. A. 1967. The tectonic significance of mesoscopic subfabrics in the southern Canadian Rockies of Alberta and British Columbia. Canadian Journal of Earth Science, 4, 39–70.

    Article  Google Scholar 

  • Price, R. A. 1988. The mechanical paradox of large overthrusts. Geological Society of America Bulletin, 100, 1898–1908.

    Article  Google Scholar 

  • Ramsay, J. G., Casey, M. & Kligfield, R. 1983. Role of shear in the development of the Helvetic fold-and-thrust belt of Switzerland. Geology, 11, 439–442.

    Article  Google Scholar 

  • Rutter, E. H. 1976. The kinetics of rock deformation by pressure solution. Philosophical Transactions of the Royal Society of London, A283, 203–219.

    Google Scholar 

  • Rutter, E. H., Maddock, R. H., Hall, S. H. & White, S. H. 1986. Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure and Applied Geophysics, 124, 3–30.

    Article  Google Scholar 

  • Rye, D. M. & Bradbury, H. J. 1988. Fluid flow in the crust: An example from a Pyreanean thrust ramp. American Journal of Science, 288, 197–235.

    Article  Google Scholar 

  • Schmid, S. M. 1975. The Glarus overthrust: Field evidence and mechanical model. Eclogae Geologicae Helvetiae, 68, 247–280.

    Google Scholar 

  • Sharp, M., Lawson, W. & Anderson, R. S. 1988 Tectonic processes in a surge-type glacier. Journal of Structural Geology, 10, 499–516.

    Article  Google Scholar 

  • Sibson, R. H. 1989. Earthquake faulting as a structural process. Journal of Structural Geology, 11, 1–14.

    Article  Google Scholar 

  • Siddans, A. W. B. 1984. Thrust tectonics, a mechanistic view from the West and Central Alps. Tectonophysics, 104, 257–281.

    Article  Google Scholar 

  • Stockmal, G. S. 1983. Modeling of large scale accretionary wedge deformation. Journal of Geophysical Research, 88, 8271–8287.

    Article  Google Scholar 

  • Wiltschko, D. V. & Budai, J. M. 1988. A model for fluid motion through layered rock: Evidence from the Idaho-Wyoming thrust belt (abst.). EOS, Transactions of the American Geophysical Union, 69, 484.

    Google Scholar 

  • Wojtal, S. 1986. Deformation within foreland thrust sheets by populations of minor faults. Journal of Structural Geology, 8, 341–360.

    Article  Google Scholar 

  • Wojtal, S. 1989. Measuring displacement gradients and strains in faulted rocks. Journal of Structural Geology, 11, 669–678.

    Article  Google Scholar 

  • Wojtal, S. 1991. Shortening and elongation of thrust zones within the Appalachian foreland fold-thrust belt. In: Mitra, S. & Fisher, G. W. (eds) Structural Geology of Fold and Thrust Belts (Elliott Volume). Johns Hopkins University Press, Baltimore (in press).

    Google Scholar 

  • Wojtal, S. & Mitra, G. 1986. Strain hardening and strain softening in fault zones from foreland thrusts. Geological Society of America Bulletin, 97, 674–687.

    Article  Google Scholar 

  • Wojtal, S. & Mitra, G. 1988. Nature of deformation in fault rocks from Appalachian thrusts. In: Mitra, G. & Wojtal, S. (eds) Geometries and mechanisms of thrusting, with special reference to the Appalachians. Special Paper of the Geological Society of America, 222, 17–33.

    Google Scholar 

  • Wojtal, S. & Pershing, J. 1991. Paleostresses associated with faults of large offset. Journal of Structural Geology, 13, 49–62.

    Article  Google Scholar 

  • Woodward, N. B., 1988. Geological applicability of critical-wedge thrust-belt models. Geological Society of America Bulletin, 99, 827–832.

    Article  Google Scholar 

  • Woodward, N. B., Wojtal, S., Paul, J. B. & Zadins, Z. Z. 1988. Partitioning of deformation within several external thrust zones of the Appalachians. Journal of Geology, 96, 351–361.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 K.R. McClay

About this chapter

Cite this chapter

Wojtal, S. (1992). One-dimensional models for plane and non-plane power-law flow in shortening and elongating thrust zones. In: McClay, K.R. (eds) Thrust Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3066-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3066-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-43900-1

  • Online ISBN: 978-94-011-3066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics