Skip to main content

Dynamic and kinematic growth and change of a Coulomb wedge

  • Chapter
Thrust Tectonics

Abstract

Deformation and structural relationships in accretionary prisms and fold and thrust belts are the result of dynamic changes in the size, geometry, or strength of the deforming wedge and its boundary conditions. The concepts of critical slope or taper that have been successful in explaining the static geometry and state of stress in a Coulomb wedge can be expanded through the use of finite element models to consider the kinematics and dynamics of a deforming Coulomb wedge. The numerical technique adopts a Coulomb failure criterion and isotropic plastic flow in a velocity-based Eulerian formulation. This formulation allows for very large deformation to be accommodated by a numerical mesh that remains fixed in space, deforming only to follow the movement of the upper surface.

Critical wedge theory defines deformational domains bounded by the critical wedge solutions. Imposed changes in boundary conditions or geometry can move the mechanical state of a wedge off a critical line into either the sub-critical or stable domain, in which a wedge is unstable during accretion, leading to transient deformation as the wedge adjusts to a new critical geometry. With steady boundary conditions the accretion process leads to self-similar growth. A zone of high strain rate representing the frontal step-up thrust and the decollement develops and separates underthrust sediment from the deforming wedge. An increase in basal strength produces large internal deformation as the wedge increases its taper. A decrease in basal strength concentrates deformation at the toe of the wedge. A large decrease in basal strength may lead to extensional collapse. A complex geological history involving repeated cycles of growth and collapse could produce tectonic exhumation of the deeply buried interior of the wedge, even in the absence of erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barr, T. D. & Dahlen, F. A. 1989. Steady-State Mountain Building 2. Thermal Structure and Heat Budget. Journal of Geophysical Research, 94, 3923–3947.

    Article  Google Scholar 

  • Beaumont, C., Hamilton, J. & Fullsack, P. 1991. Erosional Control of Active Compressional Orogens, this volume.

    Google Scholar 

  • Bird, P. & Piper, K. 1980. Plane Stress Finite Element Models of Tectonic Flow in Southern California. Physics of the Earth and Planetary Interiors, 21, 158–195.

    Article  Google Scholar 

  • Borja, R. I. & Dreiss, S. J. 1989. Numerical Modelling of Accretionary Wedge Mechanics: Application to the Barbados Subduction Problem. Journal of Geophysical Research, 94, 9323–9339.

    Article  Google Scholar 

  • Brandon, M. T. 1984. A study of deformational processes affecting unlithified sediments at active margins: A field study and a structural model, Ph.D. thesis, University of Washington, Seattle, 160p.

    Google Scholar 

  • Chapple, W. M. 1978. Mechanics of thin-skinned fold-and-thrust belts. Geological Society of America Bulletin, 89, 1189–1198.

    Article  Google Scholar 

  • Cloos, M. 1982. Flow melanges: Numerical modelling and geologic constraints on their origin in the Franciscan subduction complex, California. Geological Society of America Bulletin, 93, 330–345.

    Article  Google Scholar 

  • Cloos, M. 1984. Flow melanges and the structural evolution of accretionary wedges. Geological Society of America Special Paper, 198, 71–79.

    Google Scholar 

  • Cloos, M. & Shreve, R. L. 1988a. Subduction-Channel Model of Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins: 1. Background and Description. Pure and Applied Geophysics, 128, 455–500.

    Article  Google Scholar 

  • Cloos, M. & Shreve, R. L. 1988b. Subduction-Channel Model of Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins: 2. Implications and Discussion. Pure and Applied Geophysics, 128, 501–545.

    Article  Google Scholar 

  • Cowan, D. S. & Silling, R. M. 1978. A Dynamic, Scaled Model of Accretion at Trenches and Its Implications for the Tectonic Evolution of Subduction Complexes. Journal of Geophysical Research, 83, 5389–5396.

    Article  Google Scholar 

  • Dahlen, F. A. 1984. Noncohesive Critical Coulomb Wedges: An Exact Solution. Journal of Geophysical Research, 89, 10125–10133.

    Article  Google Scholar 

  • Dahlen, F. A., Suppe, J. & Davis, D. 1984. Mechanics of Fold-and Thrust Belts and Accretionary Wedges: Cohesive Coulomb Theory. Journal of Geophysical Research, 89, 10087–10101.

    Article  Google Scholar 

  • Dahlen, F. A. & Barr, T. D. 1989. Steady-State Mountain Building 1. Deformation and Mechanical Energy Balance. Journal of Geophysical Research, 3906–3922.

    Google Scholar 

  • Davis, D., Suppe, J. & Dahlen, F. A. 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research, 88, 1153–1172.

    Article  Google Scholar 

  • Emerman, S. H. & Turcotte, D. L. 1983. A fluid model for the shape of accretionary wedges. Earth and Planetary Science Letters, 63, 379–384.

    Article  Google Scholar 

  • Malvern, L.E. 1969. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, New Jersey.

    Google Scholar 

  • Moore, J. C., Watkins, J. S., Shipley, T. H., McMillen, K. J., Bachman, S. B., & Lundberg, N. 1982. Geology and tectonic evolution of a juvenile accretionary terrane along a truncated convergent margin: Synthesis of results from Leg 66 of the Deep Sea Drilling Project, southern Mexico. Geological Society of America Bulletin, 93, 847–861.

    Article  Google Scholar 

  • Morley, C. K. 1988. Out-Of-Sequence Thrusts. Tectonics, 7, 539–561.

    Article  Google Scholar 

  • Platt, J. P., Leggett, J. K., Young, J., Raza, H. & Alam, S. 1985. Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. Geology, 13, 507–511.

    Article  Google Scholar 

  • Platt, J. P. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geological Society of America Bulletin, 97, 1037–1053.

    Article  Google Scholar 

  • Platt, J. P. 1987. The uplift of high-pressure-low-temperature metamorphic rocks. Philosophical Transactions of the Royal Society of London A, 321, 87–103.

    Article  Google Scholar 

  • Shi, Y. & Wang, C. 1988, Thermal Structure of the Barbados Accretionary Complex. Pure and Applied Geophysics, 128, 749–766.

    Article  Google Scholar 

  • Silver, E. A., Ellis, M. J., Breen, N. A. & Shipley, T. H., 1985. Comments on the growth of accretionary wedges. Geology, 13, 6–9.

    Article  Google Scholar 

  • Stockmal, G. S. 1983. Modelling of Large Scale Accretionary Wedge Deformation. Journal of Geophysical Research, 88, 8271–8287.

    Article  Google Scholar 

  • Taylor, C. & Hughes, T. G. 1981. Finite Element Programming of the Navier-Stokes Equations. Pineridge Press Ltd., Swansea, UK, 244p.

    Google Scholar 

  • Vilotte, J. P., Daignieres, M. & Madariaga, R. 1982. Numerical Modelling of Interplate Deformation: Simple Mechanical Models of Continental Collision. Journal of Geophysical Research, 87, 10709–10728.

    Article  Google Scholar 

  • Vilotte, J. P., Daignieres, M., Madariaga, R. & Zienkiewicz, O. 1984. The role of a heterogeneous inclusion during continental collision. Physics of the Earth and Planetary Interiors, 36, 236–259.

    Article  Google Scholar 

  • Vilotte, J. P., Daignieres, M., Madariaga, R. & Zienkiewicz, O. 1986. Numerical study of continental collision: influence of buoyancy forces and an initial stiff inclusion. Geophysical Journal of the Royal Astronomical Society, 84, 279–310.

    Article  Google Scholar 

  • Westbrook, G. K., Ladd, J. W., Buhl, P., Bangs, N. & Tiley, G. J. 1988. Cross section of an accretionary wedge: Barbados Ridge complex, Geology, 16, 631–635.

    Article  Google Scholar 

  • Zhao, W.-L., Davis, D. M., Dahlen, F. A. & Suppe, J. 1986. Origin of Convex Accretionary Wedges: Evidence From Barbados. Journal of Geophysical Research, 91, 10246–10258.

    Article  Google Scholar 

  • Zienkiewicz, O.C. & Godbole, P. N. 1974. Flow of Plastic and Visco-Plastic Solids with Special Reference to Extrusion and Forming Processes. International Journal for Numerical Methods in Engineering, 8, 3–16.

    Google Scholar 

  • Zienkiewicz, O.C. 1977. The Finite Element Method. McGraw-Hill, New York, 851p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 K.R. McClay

About this chapter

Cite this chapter

Willett, S.D. (1992). Dynamic and kinematic growth and change of a Coulomb wedge. In: McClay, K.R. (eds) Thrust Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3066-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3066-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-43900-1

  • Online ISBN: 978-94-011-3066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics