Skip to main content

Photoregulation of plant gene expression

  • Chapter
  • 61 Accesses

Part of the book series: Plant Biotechnology Series ((PBS,volume 2))

Abstract

Since plants are sedentary organisms, they are much more at the mercy of their environment than are animals. It is therefore not surprising that environmental factors, such as light and temperature, have a profound effect on the growth and development of plants. In fact, the greater regulatory importance of external factors is one of the ways in which plant development differs fundamentally from that of animals (Goldberg, 1988). Environmental stimuli frequently act as cues to initiate developmental transitions in plants, a good example being the induction of leaf expansion and chloroplast biogenesis when plants are first exposed to light. Indeed light probably has a more extensive regulatory influence on plant development than any other environmental factor. In addition to detecting the presence or absence of light, plants are able to detect subtle changes in spectral quality and light intensity (Smith, 1982), and they can measure the length of the photoperiod, which is used by many species to initiate flowering (Vince-Prue, 1983). These responses are mediated by photoreceptors that are quite distinct from those that are used to harvest light energy in photosynthesis. Some examples of light-mediated responses in plants are given in Table 1.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamse, P., Kendrick, R.E. and Koornneef, M. (1988) Photomorphogenetic mutants of higher plants. Photochem. Photobiol. 48: 833.

    Google Scholar 

  • Aoyagi, K., Kuhlemeier, K. and Chua, N.-H. (1988) The pea rbcS-3A enhancer-like element directs cell-specific expression in transgenic tobacco. Mol. Gen. Genet. 213: 179.

    Google Scholar 

  • Barnett, L.K., Clugston, C.K. and Jenkins, G.I. (1987) Two phytochrome-mediated effects of light on transcription of genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylaseoxygenase in dark-grown pea (Pisum sativum) plants. FEBS Lett. 224: 287.

    Google Scholar 

  • Batschauer, A., Mosinger, E., Kreuz, K., Dore, I. and Apel, K. (1986) The implication of a plastidderived factor in the transcriptional control of nuclear genes encoding the light-harvesting chlorophyll a/b protein. Eur. J. Biochem. 154: 625.

    Google Scholar 

  • Benfey, P.N. and Chua, N.-H. (1989) Regulated genes in transgenic plants. Science 244: 174.

    Google Scholar 

  • Bennett, J., Jenkins, G.I., Cuming, A.C., Williams, R.S. and Hartley, M.R. (1984) Photoregulation of thylakoid biogenesis: the case of the light-harvesting chlorophyll a/b complex. In Chloroplast Biogenesis ed. Ellis, R.J. Cambridge University Press, 167.

    Google Scholar 

  • Berry, J.O., Carr, J.P. and Klessig, D.F. (1988) mRNAs encoding ribulose-1,5-bisphosphate carboxylase remain bound to polysomes but are not translated in amaranth seedlings transferred to darkness. Proc. Natl Acad. Sci. USA 85: 4190.

    Google Scholar 

  • Berry-Lowe, S.L. and Meagher, R.B. (1985) Transcriptional regulation of a gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean tissue is linked to the phytochrome response. Mol. Cell. Biol. 5: 1910.

    Google Scholar 

  • Björkman, O. (1981) Responses to different quantum flux densities. In Encyc. Plant Physiol. New Series, Vol. 12A, eds. Lange, O.L., Nobel, P.S., Osmond, C.B. and Zeigler, H. Springer, Berlin, 57.

    Google Scholar 

  • Boylan, M.T. and Quail, P.H. (1989) Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell 1: 765.

    Google Scholar 

  • Briggs, W.R. and Iino, M. (1983) Blue-light absorbing photoreceptors in plants. Phil. Trans. R. Soc. Lond. B 303: 347.

    Google Scholar 

  • Broglie, R., Coruzzi, G., Fraley, R. T., Rogers, S.G., Horsch, R.B., Niedermeyer, J.G., Fink, C.L., Flick, J.S. and Chua, N.-H. (1984) Light-regulated expression of a pea ribulose-1,5-bisphosphate carboxylase small subunit gene in transformed plant cells. Science 224: 838.

    Google Scholar 

  • Bruce, W.B., Christensen, A.H., Klein, T., Fromm, M. and Quail, P.H. (1989) Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment. Proc. Natl Acad. Sci. USA 86: 9692.

    Google Scholar 

  • Bruns, B., Hahlbrock, K. and Schafer, E. (1986) Fluence dependence of the ultraviolet-lightinduced accumulation of chalcone synthase mRNA and effects of blue and far-red light in cultured parsley cells. Planta 169: 393.

    Google Scholar 

  • Castresana, C, Garcia-Luque, I., Alonso, E., Malik, V.S. and Cashmore, A.R. (1988) Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J. 7: 1929.

    Google Scholar 

  • Chory, J., Peto, C.A., Feinbaum, R., Pratt, L. and Ausubel, F. (1989a) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58: 991.

    Google Scholar 

  • Chory, J., Peto, C.A., Ashbaugh, M., Saganich, R., Pratt, L. and Ausubel, F. (1989b) Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1: 867.

    Google Scholar 

  • Clugston, C.K, Barnett, L.K, Urwin, N.A.R. and Jenkins, G.I. (1990) Photoreceptors controlling transcription oirbcS genes in green leaf tissue of Pisum sativum. Photochem. Photobiol. 52: 23

    Google Scholar 

  • Colbert, J.T. (1988) Molecular biology of phytochrome. Plant Cell Env. 11: 305.

    Google Scholar 

  • Colbert, J.T, Hershey, J.P. and Quail, P.H. (1983) Autoregulatory control of translatable phytochrome mRNA levels. Proc. Natl Acad. Sci. USA 80: 2248.

    Google Scholar 

  • Colbert, J.T, Hershey, J.P. and Quail, P.H. (1985) Phytochrome regulation of phytochrome mRNA abundance. Plant Mol. Biol. 5: 91.

    Google Scholar 

  • Datta, N. and Cashmore, A.R. (1989) Binding of a nuclear protein to promoters of certain photoregulated genes is modulated by phosphorylation. Plant Cell 1: 1069.

    Google Scholar 

  • Dean, C, van den Elzen, P, Tamaki, S, Dunsmuir, P. and Bedbrook, J. (1985) Differential expression of the eight genes of the Petunia ribulose bisphosphate carboxylase small subunit multi-gene family. EMBO J. 4: 3055.

    Google Scholar 

  • Dean, C, Pichersky, E. and Dunsmuir, P. (1989a) Structure, evolution, and regulation of rbcS genes in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 415.

    Google Scholar 

  • Dean, C, Favreau, M, Bedbrook, J. and Dunsmuir, P. (1989b) Sequences 5′ to translation start regulate expression of Petunia rbcS genes. Plant Cell 1: 209.

    Google Scholar 

  • Dean, C, Favreau, M, Bond-Nutter, D, Bedbrook, J. and Dunsmuir, P. (1989c) Sequences downstream of translation start regulate quantitative expression of two Petunia rbcS genes. Plant Cell 1:201.

    Google Scholar 

  • Draper, J. and Scott, R. (1990) Gene transfer in plants. In Plant Biotechnology, Vol. 1, Plant Genetic Engineering, ed. Grierson, D. Blackie, Glasgow, 38.

    Google Scholar 

  • Elliott, R.C, Dickey, L.F, White, M.J, and Thompson, W.F. (1989) Cis-acting elements for light regulation of pea ferredoxin 1 gene expression are located within transcribed sequences. Plant Cell 1:691.

    Google Scholar 

  • Fluhr, R. and Chua, N.-H. (1986) Developmental regulation of two genes encoding ribulosebisphosphate carboxylase small subunit in pea and transgenic petunia plants: phytochrome response and blue-light induction. Proc. Natl Acad. Sci. USA 83: 2358.

    Google Scholar 

  • Fluhr, R, Moses, P, Morelli, G, Coruzzi, G, and Chua, N.-H. (1986a) Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts. EMBO J. 5: 2063.

    Google Scholar 

  • Fluhr, R, Kuhlemeier, C, Nagy, F. and Chua, N.-H. (1986b) Organ-specific and light-induced expression of plant genes. Science 232: 1106.

    Google Scholar 

  • Fromm, H, Devic, M, Fluhr, R. and Edelman, M. (1985) Control of psbA gene expression: in mature Spirodela chloroplast light regulation of 32-kd protein synthesis is independent of transcript level. EMBO J. 4: 291.

    Google Scholar 

  • Furuya, M. (1989) Molecular properties and biogenesis of phytochrome I and II. Adv. Biophys. 25: 133.

    Google Scholar 

  • Gallagher, T.F. and Ellis, R.J. (1982) Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J. 1: 1493.

    Google Scholar 

  • Gallagher, T.F, Jenkins, G.I. and Ellis, R.J. (1985) Rapid modulation of transcription of nuclear genes encoding chloroplast proteins by light. FEBS Lett. 186: 241.

    Google Scholar 

  • Gamble, P.E. and Mullet, J.E. (1989) Blue light regulates the accumulation of two psbD-psbC transcripts in barley chloroplasts. EMBO J. 8: 2785.

    Google Scholar 

  • Gidoni, D, Brosio, P, Bond-Nutter, D, Bedbrook, J. and Dunsmuir, P. (1989) Novel cis-acting elements in Petunia cab gene promoters. Mol. Gen. Genet. 215: 337.

    Google Scholar 

  • Giuliano, G, Hoffman, N.E, Ko, K, Scolnik, P.A. and Cashmore, A.R. (1988a) A light-entrained circadian clock controls transcription of several plant genes. EMBO J. 7: 3635.

    Google Scholar 

  • Giuliano, G, Pichersky, E, Malik, V.S, Timko, M.P, Scolnik, P.A. and Cashmore, A.R. (1988b) An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl Acad. Sci. USA 85: 7089.

    Google Scholar 

  • Goldberg, R.B. (1988) Plants: novel developmental processes. Science 240: 1460.

    Google Scholar 

  • Gorz, A, Schafer, W, Hirasawa, E. and Kahl, G. (1988) Constitutive and light-induced DNAse 1 hypersensitive sites in the rbcS genes of pea (Pisum sativum). Plant Mol. Biol. 11: 561.

    Google Scholar 

  • Green, P.J, Kay, S.A. and Chua, N.-H. (1987) Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J. 6: 2543.

    Google Scholar 

  • Green, P.J, Yong, M.-H, Cuozzo, M, Kano-Murakami, Y, Silverstein, P. and Chua, N.-H. (1988) Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene. EMBO J. 7: 4035.

    Google Scholar 

  • Gruissem, W. (1989) Chloroplast gene expression: how plants turn their plastids on. Cell 56: 161.

    Google Scholar 

  • Herr, W. and Clarke, J. (1986) The SV40 enhancer is composed of multiple functional elements that can compensate for one another. Cell 45: 461.

    Google Scholar 

  • Herrera-Estrella, L, Van den Broek, G, Maenhaut, R, Van Montagu, M, Schell, J, Timko, M. and Cashmore, A.R. (1984) Light-inducible and chloroplast associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature 310: 115.

    Google Scholar 

  • Hershey H.P Barker R.F Idler K.B Murray M.G. and Quail P.H. 1987 Nucleotide sequence and characterization of a gene encoding the phytochrome polypeptide from Avena. Gene 61339

    Google Scholar 

  • Jenkins, G.I. (1986) Photoregulation of expression of genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochem. Soc. Trans. 14: 22–25.

    Google Scholar 

  • Jenkins, G.I. (1988) Photoregulation of gene expression in plants. Photochem. Photobiol. 48: 821.

    Google Scholar 

  • Jenkins, G.I. and Smith, H. (1985) Red:far-red ratio does not modulate the abundance of transcripts for two major chloroplast polypeptides in light-grown Pisum sativum terminal shoots. Photochem. Photobiol. 42: 679.

    Google Scholar 

  • Jenkins, G.I, Hartley, M.R. and Bennett, J. (1983) Photoregulation of chloroplast development: transcriptional, translational and post-translational controls? Phil. Trans. R. Soc. Lond. B 303: 409.

    Google Scholar 

  • Jensen, K.H, Herrin, D.L, Plumley, G. and Schmidt, G.W. (1986) Biogenesis of photosystem II complexes: transcriptional, translational and post-translational regulation. J. Cell. Biol. 103: 1315.

    Google Scholar 

  • Karin, M, Haslinger, A, Heguy, A, Dietlin, T. and Cooke, T. (1987) Metal-responsive elements act as positive modulators of human metallothionein-IIA enhancer activity. Mol. Cell Biol. 7: 606.

    Google Scholar 

  • Kaufman, L, Roberts, L.L, Briggs, W.R. and Thompson, W.F. (1986) Phytochrome control of specific mRNA levels in developing pea buds: kinetics of accumulation, reciprocity and escape kinetics of the low fluence response. Plant Physiol. 81: 1033.

    Google Scholar 

  • Kaufman, L.S, Watson, J.C. and Thompson, W.F. (1987) Light-regulated changes in DNase hypersensitive sites in the rRNA genes of Pisum sativum. Proc. Natl Acad. Sci. USA 84: 1550.

    Google Scholar 

  • Kaulen, H, Schell, J. and Kreuzaler, F. (1986) Light-induced expression of the chimeric chalcone synthase-NPTII gene in tobacco cells. EMBO J. 5: 1.

    Google Scholar 

  • Kay, S.A., Keith, B, Shinozaki, K, Chye, M.-L. and Chua, N.-H. (1989a) The rice phytochrome gene: structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5′ upstream region. Plant Cell 1: 351.

    Google Scholar 

  • Kay, S.A., Nagatani, A, Keith, B, Deak, M, Furuya, M. and Chua, N.-H. (1989b) Rice phytochrome is biologically active in transgenic tobacco. Plant Cell 1: 775.

    Google Scholar 

  • Keller, J.M., Shanklin, J, Vierstra, R.D. and Hershey, H.P. (1989) Expression of a functional monocotyledonous phytochrome in transgenic tobacco. EMBO J. 8: 1005.

    Google Scholar 

  • Klein, R.R., Mason, H. and Mullet, J.E. (1987) Light regulated translation of chloroplast proteins. Transcripts of psaA-psaB, psbA and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J. Cell. Biol. 106: 289.

    Google Scholar 

  • Kloppstech, K. (1985) Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear messenger RNAs. Planta 165: 502.

    Google Scholar 

  • Kuhlemeier, C, Green, P.J. and Chua, N.-H. (1987a) Regulation of gene expression in higher plants. Ann. Rev. Plant Physiol. 38: 221.

    Google Scholar 

  • Kuhlemeier, C, Fluhr, R, Green, P.J. and Chua, N.-H. (1987b) Sequences in the pea rbcS-3A gene have homology to constitutive mammalian enhancers but function as negative regulatory elements. Genes Dev. 1: 247.

    Google Scholar 

  • Kuhlemeier, C, Fluhr, R. and Chua, N.-H. (1988a) Upstream sequences determine the difference in transcript abundance of pea rbcS genes. Mol. Gen. Genet. 212: 405.

    Google Scholar 

  • Kuhlemeier, C, Cuozzo, M, Green, P.J, Goyvaerts, E, Ward, K. and Chua, N.-H. (1988b) Localization and conditional redundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit of ribulose-bisphosphate carboxylase. Proc. Natl Acad. Sci. USA 85: 4662.

    Google Scholar 

  • Kuhlemeier, C, Strittmatter, G, Ward, K. and Chua, N.-H. (1989) The pea rbcS-3A promoter mediates light responsiveness but not organ specificity. Plant Cell 1: 471.

    Google Scholar 

  • Lamb, C.J. and Lawton, M.A. (1983) Photocontrol of gene expression. In Encyc. Plant Physiol. New Series, vol. 16, eds. Shropshire, W. and Mohr, H. Springer, Berlin, 213.

    Google Scholar 

  • Lamppa, G, Nagy, F. and Chua, N.-H. (1985) Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco. Nature 316: 750.

    Google Scholar 

  • Lenardo, M, Pierce, J.W. and Baltimore, D. (1987) Protein-binding sites in Ig gene enhancers determine transcriptional activity and inducibility. Sciences 236: 1573.

    Google Scholar 

  • Link, G. (1988) Photocontrol of plastid gene expression. Plant Cell Env. 11: 329.

    Google Scholar 

  • Lipphardt, S, Brettschneider, R, Kreuzaler, F, Schell, J. and Dangl, J.L. (1988) UV-inducible transient expression in parsley protoplasts identifies regulatory cis-elements of a chimeric Antirrhinum majus chalcone synthase gene. EMBO J. 7: 4027.

    Google Scholar 

  • Lissemore, J.L. and Quail, P.H. (1988) Rapid transcriptional regulation by phytochrome of the genes for phytochrome and chlorophyll a/b binding protein in Avena sativa. Mol. Cell. Biol. 8: 4840.

    Google Scholar 

  • Lissemore, J.L, Colbert, J.T. and Quail, P.H. (1987) Cloning of cDNA for phytochrome from etiolated Cucurbita and coordinate regulation of the abundance of two distinct phytochrome transcripts. Plant Mol. Biol. 8: 485.

    Google Scholar 

  • Maniatis, T, Goodbourn, S. and Fischer, J.A. (1987) Regulation of inducible and tissue-specific gene expression. Science 236: 1237.

    Google Scholar 

  • Manzara, T. and Gruissem, W. (1988) Organization and expression of the genes encoding ribulose-1,5-bisphosphate carboxylase in higher plants. Photosynthesis Res. 16: 117.

    Google Scholar 

  • Marrs, K.A. and Kaufman, L.S. (1989) Blue-light regulation of transcription for nuclear genes in pea. Proc. Natl Acad. Sci. USA 86: 4492.

    Google Scholar 

  • Mayfield, S.P. and Taylor, W.C. (1984) Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA. Eur. J. Biochem. 144: 79.

    Google Scholar 

  • Mitra, A, Choi, H.K. and An, G. (1989) Structural and functional analyses of Arabidopsis thaliana chlorophyll a/b-binding protein (cab) promoters. Plant Mol. Biol. 12: 169.

    Google Scholar 

  • Morelli, G, Nagy, F, Fraley, R.T., Rogers, S.G. and Chua, N.-H. (1985) A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. Nature 315: 200.

    Google Scholar 

  • Mösinger, E, Batschauer, A, Schäfer, E. and Apel, K. (1985) Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare L.). Eur. J. Biochem. 147: 137.

    Google Scholar 

  • Mösinger, E, Batschauer, A, Vierstra, R, Apel, K. and Schäfer, E. (1987) Comparison of the effects of exogenous native phytochrome and in vivo irradiation on in vitro transcription in isolated nuclei from barley (Hordeum vulgare L.). Planta 170: 505.

    Google Scholar 

  • Mullet, J.E. (1988) Chloroplast development and gene expression. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 475.

    Google Scholar 

  • Nagy, F., Morelli, G., Fraley, R.T, Rogers, S.G. and Chua, N.-H. (1985) Photoregulated expression of a pea rbcS gene in leaves of transgenic plants. EMBO J. 4: 3063.

    Google Scholar 

  • Nagy, F., Kay, S.A., Boutry, M, Hsu, M.-Y. and Chua, N.-H. (1986) Phytochrome-controlled expression of wheat cab gene in transgenic tobacco seedlings. EMBO J. 5: 1119.

    Google Scholar 

  • Nagy, F, Boutry, M, Hsu, M.-Y, Wong, M. and Chua, N.-H. (1987) The 5′ proximal region of the wheat cab-1 gene contains a 268-bp enhancer-like sequence for phytochrome response. EMBO J. 6: 2537.

    Google Scholar 

  • Nagy, F, Kay, S.A. and Chua, J.-H. (1988a) Gene regulation by phytochrome. Trends Genet. 4: 37.

    Google Scholar 

  • Nagy, F, Kay, S.A. and Chua, N.-H. (1988b) A circadian clock regulates transcription of the wheat cab-1 gene. Genes Dev. 2: 376.

    Google Scholar 

  • Oelmüller, R. (1989) Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem. Photobiol. 49: 229.

    Google Scholar 

  • Oelmüller, R, Levitan, I, Bergfeld, R, Rajasekhar, V.K. and Mohr, H. (1986) Expression of nuclear genes is affected by treatments acting on the plastids. Planta 168: 482.

    Google Scholar 

  • Oelmüller, R, Kendrick, R.E. and Briggs, W.R. (1989) Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea mutant of tomato. Plant Mol. Biol. 13: 223.

    Google Scholar 

  • Ohl, S, Hahlbrock, K. and Schafer, E. (1989) A stable blue-light-derived signal modulates ultraviolet-light-induced activation of the chalcone-synthase gene in cultured parsley cells. Planta 111: 228.

    Google Scholar 

  • Okubara, P.A., Flores, S. and Tobin, E.M. (1988) Characterization of a negatively light-regulated mRNA from Lemna gibba. Plant Mol. Biol. 11: 673.

    Google Scholar 

  • Otto, V, Mosinger, E, Sauter, M. and Schafer, E. (1983) Phytochrome control of its own synthesis in Sorghum vulgare and Avena sativa. Photochem. Photobiol. 38: 693.

    Google Scholar 

  • Piechulla, B. (1989) Changes in the diurnal and circadian (endogenous) mRNA oscillations of the chlorophyll a/b binding protein in tomato leaves during altered day/night (light/dark) regimes. Plant Mol. Biol. 12: 317.

    Google Scholar 

  • Poulsen, C. and Chua, N.-H. (1988) Dissection of 5′ upstream sequences for selective expression of the Nicotiana plumbaginifolia rbcS-SB gene. Mol. Gen. Genet. 214: 16.

    Google Scholar 

  • Prywes, R, Dutta, A, Cromlish, J. A. and Roeder, R.G. (1988) Phosphorylation of serum response factor, a factor that binds to the serum response element of the cFOS enhancer. Proc. Natl Acad. Sci. USA 85: 7206.

    Google Scholar 

  • Ptashne, M. (1988) How eukaryotic transcriptional activators work. Nature 335: 683.

    Google Scholar 

  • Sagar, A.D., Horwitz, B.A., Elliott, R.C., Thompson, W.F. and Briggs, W.R. (1988) Light effects on several chloroplast components of Norflurazon-treated pea seedlings. Plant Physiol. 88: 340.

    Google Scholar 

  • Sasaki, Y, Nakamura, Y. and Matsuno, R. (1987) Regulation of gene expression of ribulose bisphosphate carboxylase in greening pea leaves. Plant Mol. Biol. 8: 375.

    Google Scholar 

  • Schöffl, F, Raschke, E. and Nagao, R.T. (1984) The DNA sequence analysis of soybean heat-shock genes and identification of possible regulatory promoter elements. EMBO J. 3: 2491.

    Google Scholar 

  • Schmelzer, E, Jahnen, W. and Hahlbrock, K. (1988) In situ localisation of light-induced chalcone synthase mRNA, chalcone synthase and flavonoid end products in epidermal cells of parsley leaves. Proc. Natl Acad. Sci. USA 85: 2989. Schöffl, F, Raschke, E. and Nagao, R.T. (1984) The DNA sequence analysis of soybean heat-shock genes and identification of possible regulatory promoter elements. EMBO J. 3: 2491.

    Google Scholar 

  • Schulze-Lefert, P., Dangl, J.L., Becker-Andre, M, Hahlbrock, K. and Schulz, W. (1989a) Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J. 8: 651.

    Google Scholar 

  • Schulze-Lefert, P., Becker-Andre, M., Schulz, W, Hahlbrock, K. and Dangl, J.L. (1989b) Functional architecture of the light-responsive chalcone synthase promoter from parsley. Plant Cell 1:707.

    Google Scholar 

  • Sharrock, R.A., Parks, B.M., Koornneef, M. and Quail, P.H. (1988) Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Mol. Gen. Genet. 213: 9.

    Google Scholar 

  • Sharrock, R.A. and Quail, P.H. (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3: 1745.

    Google Scholar 

  • Shirley, B.W., Berry-Lowe, S.L, Rogers, S.G., Flick, J.S., Horsch, R, Fraley, R.T. and Meagher, R.B. (1987) 5′ proximal sequences of a soybean ribulose-1,5-bisphosphate carboxylase small subunit gene direct light and phytochrome controlled transcription. Nucl. Acids Res. 15: 6501.

    Google Scholar 

  • Silverthorne, J. and Tobin, E.M. (1987) Phytochrome regulation of nuclear gene expression. BioEssays 7: 18.

    Google Scholar 

  • Simpson, J, Timko, M, Cashmore, A.R, Schell, J, Van Montagu, M. and Herrera-Estrella, L. (1985) Light-inducible and tissue-specific expression of a chimaeric gene under control of the 5′ flanking sequences of a pea chlorophyll a/b-binding protein gene. EMBO J. 4: 2723.

    Google Scholar 

  • Simpson, J, Van Montagu, M. and Herrera-Estrella, L. (1986a) Photosynthesis-associated gene families: differences in response to tissue-specific and environmental factors. Science 233: 34.

    Google Scholar 

  • Simpson, J, Schell, J, Van Montagu, M. and Herrera-Estrella, L. (1986b) Light-inducible and tissue-specific pea LHCP gene expression involves an upstream element combining enhancerand silencer-like properties. Nature 323: 551.

    Google Scholar 

  • Smith, H. (1982) Light quality, photoperception and plant strategy. Ann. Rev. Plant Physiol. 33:481.

    Google Scholar 

  • Sommer, H, Bonas, U. and Saedler, H. (1988) Transposon-induced alterations in the promoter region affect transcription of the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet. 211:49.

    Google Scholar 

  • Spiller, S.C., Kaufman, L.S., Thompson, W.F. and Briggs, W.R. (1987) Specific mRNA and rRNA levels in greening pea leaves during recovery from iron stress. Plant Physiol. 84: 409.

    Google Scholar 

  • Staiger, D., Kaulen, H. and Schell, J. (1989) A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognised by an evolutionarily conserved nuclear protein. Proc. Natl Acad. Sci. USA 86: 6930.

    Google Scholar 

  • Stayton, M.M., Brosio, P. and Dunsmuir, P. (1989) Photosynthetic genes of Petunia (Mitchell) are differently expressed during the diurnal cycle. Plant Physiol. 89: 776.

    Google Scholar 

  • Steinmuller, K., Batschauer, A. and Apel, K. (1986) Tissue-specific and light-dependent changes in chromatin organisation in barley (Hordeum vulgare). Eur. J. Biochem. 158: 519.

    Google Scholar 

  • Stockhaus, J, Schell, J. and Wilmitzer, L. (1989) Correlation of the expression of the nuclear photosynthetic gene ST-LS1 with the presence of chloroplasts. EMBO J. 8: 2445.

    Google Scholar 

  • Sugita, M. and Gruissem, W. (1987) Developmental, organ-specific and light-dependent expression of the tomato ribulose-1,5-bisphosphate carboxylase small subunit gene family. Proc. Natl Acad. Sci. USA 84: 7104.

    Google Scholar 

  • Taylor, W.C. (1989a) Regulatory interactions between nuclear and plastid genomes. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 211.

    Google Scholar 

  • Taylor, W.C. (1989b) Transcriptional regulation by a circadian rhythm. Plant Cell 1: 259.

    Google Scholar 

  • Thompson, W.F. (1988) Photoregulation: diverse gene responses in greening seedlings. Plant Cell Env. 11:319.

    Google Scholar 

  • Thompson, W.F., Everett, M., Polans, N.O., Jorgensen, R.A. and Palmer, J.D. (1983) Phytochrome control of RNA levels in developing pea and mung bean leaves. Planta 158: 487.

    Google Scholar 

  • Thompson, W.F, Kaufman, L.S. and Watson, J.C. (1985) Induction of plant gene expression by light. BioEssays 3: 153.

    Google Scholar 

  • Timko, M.P., Kausch, A.P., Castresana, C., Fassler, J., Herrera-Estrella, L, Van den Broek, G, Van Montagu, M, Schell, J. and Cashmore, A.R. (1985) Light-regulation of plant gene expression by an enhancer-like element. Nature 318: 579.

    Google Scholar 

  • Tobin, E.M. and Silverthorne, J. (1985) Light-regulation of gene expression in higher plants. Ann. Rev. Plant Physiol. 36: 569.

    Google Scholar 

  • Trainor, C. D., Stamler, S.J. and Engel, J.D. (1987) Erythroid-specific transcription of the chicken histone H5 gene is directed by a 3′ enhancer. Nature 328: 827.

    Google Scholar 

  • Ueda, T, Pichersky, E, Malik, V.S. and Cashmore, A.R. (1989) Level of expression of the tomato rbcS-3A gene is modulated by a far upstream promoter element in a developmentally regulated manner. Plant Cell 1: 217.

    Google Scholar 

  • Vince-Prue, D. (1983) Photomorphogenesis and flowering. In Encyc. Plant Physiol. New Series, vol. 16B, eds. Shropshire Jr., W. and Mohr, H. Springer, Berlin, 457.

    Google Scholar 

  • de Vries, S.C, Springer, J. and Wessels, J.G.H. (1982) Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greening pea seedlings. Planta 156: 129.

    Google Scholar 

  • Warpeha, K.M.F, Marrs, K.A. and Kaufman, L.S. (1989) Blue-light regulation of specific transcript levels in Pisum sativum. Plant Physiol. 91: 1030.

    Google Scholar 

  • Waugh, R. and Brown, J.W.S. (1990) Plant gene structure and expression. In Plant Biotechnology, Vol. 1, Plant Genetic Engineering, ed. Grierson, D. Blackie, Glasgow, 1.

    Google Scholar 

  • Yamamoto, K.K, Gonzalez, G.A, Biggs III, W.H. and Montminy, M.R. (1988) Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334: 494.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jenkins, G.I. (1991). Photoregulation of plant gene expression. In: Grierson, D. (eds) Developmental Regulation of Plant Gene Expression. Plant Biotechnology Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3052-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3052-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5357-0

  • Online ISBN: 978-94-011-3052-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics