Skip to main content

Fracture behaviour of epoxy resins

  • Chapter

Abstract

As a result of their superior mechanical properties, low shrinkage and thermal stability, epoxy resins are finding increasing use in a wide range of engineering applications. Over a twenty year period between 1965 and 1985, epoxy resin consumption in Western Europe increased by over 500% to reach approximately 132000 tonnes by the mid-1980s (Feuerhahn, 1986). Since epoxies cost between three and fiteen times more than other thermosets such as isophthalic polyesters, they tend to be used in more advanced engineering applications where the increased cost of the product is offset by their overall superior load-bearing capacity and/or chemical resistance. In Western Europe the coatings industry represents the principal user of epoxy resins followed by the electrical and construction industries (Feuerhahn, 1986). Although much of the research published in the literature relates to epoxies for use in advanced composites, this sector represented only 4% of the total market in this year. In almost all of these applications, properties such as high strength, stiffness and toughness are fundamental requirements. The consequences of defects or local stress raisers in these systems can vary from inconvenient, for example the case of a somewhat unaesthetic damaged surface coating, to catastrophic such as the case of a heavily delaminated load-bearing aircraft structure. A detailed understanding of the deformation and failure mechanisms that occur in these materials is therefore clearly necessary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbezat, M. (1990) PhD Thesis, Ecole Poly technique Fédéraie de Lausanne.

    Google Scholar 

  • Bascom, W.D., Ting, R.Y., Moulton, R.J., Riew, C.K. and Siebert, A.R. (1981) J. Materials Sci. 16, 2657–2664.

    Article  Google Scholar 

  • Bell, J.P. (1970) J. Appl. Poly. Sci. 14, 1901–1906.

    Article  Google Scholar 

  • Bradley, W.L. (1989) In Thermoplastic Composite Materials, ed. Carlsson L.A. Elsevier, Applied Sci. Pub.

    Google Scholar 

  • Bradley, W.L. (1991) Proc. of the 8th Int. Conf. on Deformation, Yield and Fracture of Polymers, PRI paper 36.

    Google Scholar 

  • Bradley, W.L., Schultz, W., Corleto, C. and Komatsu, R. (1992) to be published in Rubber-Toughened Plastics, ed. Riew, C.K.

    Google Scholar 

  • Bucknall, C.B. and Partridge, I.K. (1983) Polymer 24, 639–644.

    Article  Google Scholar 

  • Bucknall, C.B. and Partridge, I.K. (1986) Polymer Eng. and Sci. 26, 54–60.

    Article  Google Scholar 

  • Cantwell, W.J., Roulin-Moloney, A.C. and Kaiser, T. (1988a) J. Materials Sci. 23, 1615–1631.

    Article  Google Scholar 

  • Cantwell, W.J., Roulin-Moloney, A.C. and Kausch, H.H. (1988b) J. Materials Sci. Letters 7, 976–980.

    Article  Google Scholar 

  • Cantwell, W.J., Smith, J.W., Kausch, H.H. and Kaiser, T. (1990) J. Materials Sci. 25, 633–648.

    Article  Google Scholar 

  • Chen, T.K. and Jan, Y.H. (1991) J. Materials Sci. 26, 5848–5858.

    Article  Google Scholar 

  • Cherry, B.W. and Thomson, K.W. (1981) J. Materials Sci. 16, 1913–1924.

    Article  Google Scholar 

  • Cudre-Maroux, N. (1988) PhD Thesis, Ecole Poly technique Fédérale de Lausanne.

    Google Scholar 

  • Doll, W. (1989) In Fractography and Failure Mechanisms of Polymers and Composites, Ch. 10, ed. Roulin-Moloney, A.C. Elsevier Applied Science.

    Google Scholar 

  • Dusek, K., Plestil, J., Lednicky, F. and Lunak, S. (1978) Polymer 19, 393–397.

    Article  Google Scholar 

  • Ellis, B. (1992) Private communication.

    Google Scholar 

  • Evans, A.G., Williams, S. and Beaumont, P.W.R. (1985) J. Materials Sci. 20, 3668–3674.

    Article  Google Scholar 

  • Evans, A.G., Ahmad, Z.B., Gilbert, D.G. and Beaumont, P.W.R. (1986) Acta Metall. 34, 79–87.

    Article  Google Scholar 

  • Feuerhahn, M. (1986) Kunstoffe 76, 872–873.

    Google Scholar 

  • Fischer, M. (1992) In Advances in Polymer Science 100, Springer-Verlag, Berlin, pp. 313–355.

    Google Scholar 

  • Glad, M.D. (1986) PhD Thesis, Cornell University.

    Google Scholar 

  • Gledhill, R.A. and Kinloch, A.J. (1976) Polymer 17, 727–731.

    Article  Google Scholar 

  • Gledhill, R.A., Kinloch, A.J., Yamini, S. and Young, R.J. (1978) Polymer 19, 574–582.

    Article  Google Scholar 

  • Gledhill, R.A., Kinloch, A.J. and Shaw, S.J. (1979) J. Materials Sci. Letters 14, 1769–1772.

    Article  Google Scholar 

  • Griffith, A.A. (1920) Phil. Trans. Roy Soc. A221, 163–198.

    Google Scholar 

  • Guild, F.J. and Young, R.J. (1989) J. Materials Sci. 24, 298–306.

    Article  Google Scholar 

  • Hedrick, J.L., Yilgör, Wilkes, G.L. and McGrath, J.E. (1985) Polymer Bulletin 13, 201–208.

    Article  Google Scholar 

  • Hibbs, M. and Bradley, W.L. (1987) Proc. Soc. Exp. Mechanics, Fall Meeting, Georgia.

    Google Scholar 

  • Huang, Y. and Kinloch, A.J. (1992) J. Materials Sci. Letters 11, 484–489.

    Article  Google Scholar 

  • Hunston, D.L., Kinloch, A.J., Shaw, S.J. and Wang, S.S. (1984) in Adhesive Joints ed. Mittal, K.L., Plenum Press, pp. 789–807.

    Google Scholar 

  • Hwang, J.F., Manson, J.A., Hertzberg, R.W., Miller, G.A. and Sperling, L.H. (1989) Poly. Eng. Sci. 29, 1466-1476.

    Google Scholar 

  • Kinloch, A.J. (1985) In Advances in Polymer Science 72, ed. Dušek, K. Springer-Verlag, Berlin, pp. 46–67.

    Google Scholar 

  • Kinloch, A.J. (1987) In Rubber-Toughened Plastics ed. Riew, C.K. Advances in Chemistry Series 222 American Chem. Soc. 1989 Ch. 3.

    Google Scholar 

  • Kinloch, A.J. and Hunston, D.L. (1986) Polymer 5, 1207–1209.

    Google Scholar 

  • Kinloch, A.J. and Williams, J.G. (1980) J. Materials Sci., 15, 987–996.

    Article  Google Scholar 

  • Kinloch, A.J., Shaw, S.J. and Hunston, D.L. (1983) Polymer 24, 1355–1363.

    Article  Google Scholar 

  • Kinloch, A.J., Gilbert, D.G. and Shaw, S.J. (1986) J. Materials Sci. 21, 1051–1056.

    Article  Google Scholar 

  • Kinloch, A.J., Finch, C.A. and Hashemi, S. (1987) Polymer Comm. 28, 322–325.

    Google Scholar 

  • Kunz-Douglass, S., Beaumont, P.W.R. and Ashby, M.F. (1980) J. Materials Sci. 15, 1109–1123.

    Article  Google Scholar 

  • LeMay, J.D. and Kelley, F.N. (1986) In Adv. in Polymer Science, 78 ed. Dušek, K. pp. 116–148.

    Google Scholar 

  • Levita, G. (1989) In Rubber-Toughened Plastics ed. Riew, C.K. Advances in Chemistry Series 222 American Chem. Soc. 1989 Ch. 4.

    Google Scholar 

  • Lilley, J. and Holloway, D.G. (1973) Phil. Mag. 8, 215–220.

    Article  Google Scholar 

  • Low, I.M. (1990) J. Materials Sci. 25, 2144–2148.

    Article  Google Scholar 

  • Marshall, G.P., Coutts, L.H. and Williams, J.G. (1974) J. Materials Sci. 9, 1409–1419.

    Article  Google Scholar 

  • Meeks, A.C. (1974) Polymer 15, 675–681.

    Article  Google Scholar 

  • Mijovic, J.S. and Koutsky, J.A. (1979) J. Appl. Polym. Sci. 23, 1037–1042.

    Article  Google Scholar 

  • Misra, S.C., Manson, J.A. and Sperling, L.H. (1979) ACS Symp. Series 114, 137–156.

    Article  Google Scholar 

  • Moloney, A.C., Kausch, H.H., Kaiser, T. and Beer, H.R. (1987) J. Materials Sci. 22, 381–393.

    Article  Google Scholar 

  • Moloney, A.C., Kausch, H.H. and Stieger, H.R. (1983) J. Materials Sci. 18, 208–216.

    Article  Google Scholar 

  • Moloney, A.C., Kausch, H.H. and Stieger, H.R. (1984) J. Materials Sci. 19, 1125–1130.

    Article  Google Scholar 

  • Morgan, R.J. (1980) In Developments in Reinforced Plastics 1, ed. Pritchard, G. App. Sci. Pub., Ch. 7.

    Google Scholar 

  • Morgan, R.J. (1985) In Adv. in Polym. Sci. 72, ed. Dusek, K. Springer-Verlag, Berlin, pp. 3–43.

    Google Scholar 

  • Morgan, R.J. and O’Neal, J. (1977) J. Materials Sci. 12, 1966–1980.

    Article  Google Scholar 

  • Morgan, R.J., O’Neal, J. and Miller, D.B. (1979) J. Materials Sci. 14, 109–124.

    Article  Google Scholar 

  • Narisawa, I., Murayama, T. and Ogawa, H. (1982) Polymer 23, 291–294.

    Article  Google Scholar 

  • Nielsen, L.E. (1969) J. Macromol. Sci.-Revs Macromol. Chem., C3(1), 69–103.

    Article  Google Scholar 

  • Pearson, R.A. (1990) PhD Thesis, Univ. of Michigan.

    Google Scholar 

  • Pearson, R.A. and Yee, A.F. (1989) J. Materials Sci. 24, 2571–2580.

    Article  Google Scholar 

  • Pearson, R.A. and Yee, A.F. (1991) Proc. of the 8th Int. Conf. on Deformation, Yield and Fracture of Polymers, PRI paper 40.

    Google Scholar 

  • Phillips, D.C., Scott, J.M. and Jones, M. (1978) J. of Materials Sci. 13, 311–322.

    Article  Google Scholar 

  • Racich, J. and Koutsky, J. (1976) J. of Appl. Polym. Sci. 20, 2111–2129.

    Article  Google Scholar 

  • Rooke, D.P. and Cartwright, D.J. (1976) Compendium of Stress Intensity Factors, HMSO, London.

    Google Scholar 

  • Scott, J.M., Wells, G.M. and Phillips, D.C. (1980) J. Materials Sci. 15, 1436–1448.

    Article  Google Scholar 

  • Sih, G.C. (1973) Handbook of Stress-Intensity Factors for Researchers and Engineers, Lehigh Univ.

    Google Scholar 

  • Smith, J.W. (1989) PhD Thesis, Ecole Poly technique Fédérale de Lausanne.

    Google Scholar 

  • Spanoudakis, J. and Young, R.J. (1984) J. Materials Sci. 19, 473–486.

    Article  Google Scholar 

  • Stalder, B. (1985) PhD Thesis, Ecole Poly technique Fédérale de Lausanne.

    Google Scholar 

  • Sultan, J.N. and McGarry, F.J. (1973) Poly. Eng. and Sci. 13, 29–34.

    Article  Google Scholar 

  • Tada, H., Paris, P. and Irwin, G.R. (1973) The Stress Analysis of Cracks Handbook, Del Research Corp., Hellertown.

    Google Scholar 

  • Thomson, K.W. (1981) J. Materials Sci. Letters 16, 1435–1436.

    Article  Google Scholar 

  • van den Boogaart, A. (1966) Inst. of Physics Conf. Proc. London, pp. 167–175.

    Google Scholar 

  • Van Noort, R. and Ellis, B. (1984) J. Materials Sci. Letters 3, 1031–1034.

    Article  Google Scholar 

  • Williams, J.G. (1973) Stress Analysis of Polymers, Longmans, London.

    Google Scholar 

  • Williams, J.G. (1984) Fracture Mechanics of Polymers, Ellis Horwood Ltd, Chichester.

    Google Scholar 

  • Yamini, S. and Young, R.J. (1977) Polymer 18, 1075–1080.

    Article  Google Scholar 

  • Yamini, S. and Young, R.J. (1979) J. Materials Sci. 14, 1609–1618.

    Article  Google Scholar 

  • Yamini, S. and Young, R.J. (1980) J. of Materials Sci. 15, 1823–1831.

    Article  Google Scholar 

  • Young, R.J. (1980) In Developments in Reinforced Plastics-1, ed. Pritchard, G. App. Sci. Pub. Ch.9.

    Google Scholar 

  • Young, R.J. and Beaumont, P.W.R. (1976) J. Materials Sci. Letters 11, 778–779.

    Google Scholar 

  • Young, R.J., Maxwell, D.L. and Kinloch, A.J. (1986) J. Materials Sci. 21, 380–388.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cantwell, W.J., Kausch, H.H. (1993). Fracture behaviour of epoxy resins. In: Ellis, B. (eds) Chemistry and Technology of Epoxy Resins. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2932-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2932-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5302-0

  • Online ISBN: 978-94-011-2932-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics