Skip to main content

From Molecular Biology to Molecular Modelling: The Nicotinic Acetylcholine Receptor

  • Chapter

Abstract

Currently, a molecular biologist is able to sequence DNA at the rate equivalent to 300 amino acids per day. This is leading to an explosion in the number of protein sequences available. Moreover, cross-hybridisation studies mean that once a protein has been sequenced it is relatively easy to find related sequences within the same organism or the same gene in other organisms. This way, for many proteins whole families of sequences are available from a wide spectrum of evolutionarily different organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. & Numa, S., Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature, 299 (1982) 793.

    Article  PubMed  CAS  Google Scholar 

  2. Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H. & Barnard, E. A., Sequence and functional expression of the GABA A receptor shows a ligand gated receptor superfamily, Nature, 328 (1987) 221.

    Article  PubMed  CAS  Google Scholar 

  3. Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C, Beyrether, K., Gundelfinger, E. D. & Betz, H., The strychnine binding subunit of the glycine receptor shows homology with the nicotinic acetylcholine receptor, Nature, 328 (1987) 215.

    Article  PubMed  CAS  Google Scholar 

  4. Unwin, N., The structure of ion channels in membranes of excitable cells, Neuron, 3 (1989) 655.

    Article  Google Scholar 

  5. Mitra, M., McCarthy, M. P., & Stroud, R. M., Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kD cytoskeletal protein, determined at 22 Å by low dose electron microscopy and X-ray diffraction to 12•5 Å, J. Cell. Biol., 109 (1989) 755.

    Article  PubMed  CAS  Google Scholar 

  6. Deisenhofer, J., Epp, O., Mikki, K., Huber, R. & Michel, H., Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution, Nature, 318 (1985) 618.

    Article  Google Scholar 

  7. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H., Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy, J. Mol. Biol., 213 (1990). (In press).

    Google Scholar 

  8. Kuhlbrandt, W. & Wang, Da Neng, Three-dimensional structure of plant light-harvesting complex determined by electron crystallography, Nature, 350 (1991) 130.

    Article  PubMed  CAS  Google Scholar 

  9. Jap, B. K., Walian, P. J. & Gehring, K., Structural architecture of an outer membrane channel as determined by electron crystallography, Nature, 350 (1991) 167.

    Article  PubMed  CAS  Google Scholar 

  10. Toyoshima, C. & Unwin, N., Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes, Nature, 336 (1988) 247.

    Article  PubMed  CAS  Google Scholar 

  11. Kao, P. N. & Karlin, A., Acetylcholine receptor binding site contains a disulphide cross-link between adjacent half-cystinyl residues, J. Biol. Chem., 261 (1986) 8085.

    PubMed  CAS  Google Scholar 

  12. Neumann, D., Barchan, D., Fridkin, M. & Fuchs, S., Analysis of ligand binding to the synthetic dodecapeptide 185–196 of the acetylcholine receptor α subunit, Proc. Natl. Acad. Sci. USA, 83 (1986) 9250.

    Article  PubMed  CAS  Google Scholar 

  13. McCormick, D. J. & Atassi, M. Z., Localisation and synthesis of the acetylcholine-binding site in the α-chain of the Torpedo californica acetylcholine receptor', Biochem. J., 224 (1984) 995.

    PubMed  CAS  Google Scholar 

  14. Madhok, T. C., Chao, C. C, Matta, S., Hong, A. & Sharp, B. M., Monospecific antibodies against a synthetic peptide predicted from the alpha-3 nicotinicreceptor cDNA inhibit binding of [3H]nicotine to rat brain nicotinic cholinergic receptor, Biochem. Biophys. Res. Com., 165 (1989) 151.

    Article  PubMed  CAS  Google Scholar 

  15. Smart, L., Meyers, H., Hilgenfeld, R., Saenger, W. & Maelicke, A., A structural model for the ligand-binding sites at the nicotinic acetylcholine receptor, FEBS Lett., 178 (1984) 64.

    Article  CAS  Google Scholar 

  16. Luyten, W. H. M. L., A Model for the Acetylcholine Binding Site of the Nicotinic Acetylcholine Receptor, J. Neuroscience Res., 16 (1986) 51.

    Article  CAS  Google Scholar 

  17. Cockcroft, V. B., Osguthorpe, D. J., Barnard, E. & Lunt, G. G., Modelling of Agonist binding to the Ligand Gated Ion-Channel Superfamily of Receptors, Proteins, 8 (1990) 386.

    Article  PubMed  CAS  Google Scholar 

  18. Chou, P. Y. & Fasman, G. D., β-turns in proteins, J. Mol. Biol., 115 (1977) 135.

    Article  PubMed  CAS  Google Scholar 

  19. Sutciffe, M. J., Hayes, F. R. F. & Blundell, T. L., Knowledge based modelling of homologous proteins, part II: rules for the conformation of substituted sidechains, Protein Eng., 1 (1987) 385.

    Article  Google Scholar 

  20. Claudio, T., Ballivet, M., Patrick, J. & Heinemann, S., Nucleotide and deduced amino acid sequence of Torpedo californica acetylcholine receptor y subunit, Proc. Natl. Acad. Sci. USA, 80 (1983) 1111.

    Google Scholar 

  21. Finer-Moore, J. & Stroud, R. M., Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci., 81 (1984) 155.

    Article  PubMed  CAS  Google Scholar 

  22. Stroud, R. M. & Finer-Moore, J., Acetylcholine receptor structure, function and evolution, Ann. Rev. Cell Biol., 1 (1985) 317.

    Article  PubMed  CAS  Google Scholar 

  23. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fulita, Y., Fukuda, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M. & Numa, S., Location of functional regions of acetylcholine receptor ar-subunit by site-directed mutagensis, Nature, 313 (1985) 364.

    Article  PubMed  CAS  Google Scholar 

  24. Tobimatsu, T., Fujita, Y., Fukuda, K., Tanaka, K., Mori, Y., Konno, T., Mishina, M. & Numa, S., Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function, FEBS. Lett., 222 (1987) 56.

    Article  PubMed  CAS  Google Scholar 

  25. Lear, J. D., Wasserman, Z. R. & DeGrado, W. F., Synthetic peptide models for protein ion channels, Science, 240 (1988) 1177.

    Google Scholar 

  26. Richardson J. S. & Richardson, D. C, Amino acid preferences for specific locations at the ends of alpha helices, Science, 240 (1988) 1648.

    Google Scholar 

  27. Guy, H. R. & Hucho, F., The ion channel of the nicotinic acetylcholine receptor, TINS, 10 (1987) 318.

    CAS  Google Scholar 

  28. Dauber-Osguthorpe, P., Sessions, R. B. & Osguthorpe, D. J., FOCUS, (Finally One Can Understand Simulations); Molecular dynamics analysis program. Molecular Graphics Unit, University of Bath, Bath, UK (1988).

    Google Scholar 

  29. Charnet, P., Labarca, C, Leonard, R. J., Vogelaar, N. J., Czyzyk, L., Gouin, A., Davidson, N. & Lester, H., An open-channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor, Neuron, 2 (1990) 87.

    Article  Google Scholar 

  30. Giraudat, J., Dennis, M., Heidmann, T., Haumont, P.-Y., Lederer, F. & Changeux, J.-P., Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the ß and δ chains, Biochemistry, 26 (1987) 2410.

    Google Scholar 

  31. Hucho, F., Oberthur, W. & Lottspeich, G., The ion-channel of the nicotinic acetylcholine receptor is formed by the homologous helices MII of the receptor subunits, FEBS Lett., 205 (1986) 137.

    Article  PubMed  CAS  Google Scholar 

  32. DiPaola, M., Kao, P. N. & Karlin, A., Mapping of the α-subunit site photolabeled by the noncompetitive inhibitor [3H]quinacrine azide in the active state of the nicotinic acetylcholine receptor, J. Biol. Chem., 265 (1990) 11017.

    PubMed  CAS  Google Scholar 

  33. Marquez, J., Iriate, A. & Martinez-Carrion, M., Covalent modification of a critical sulphydryl group in the acetylcholine receptor: cysteine-222 of the ar-subunit, Biochemistry, 28 (1989) 7433.

    Article  PubMed  CAS  Google Scholar 

  34. Cockcroft, V. B., A modelling study of ligand-gated ion channel receptors, PhD thesis, University of Bath, 1992.

    Google Scholar 

  35. Pearl, L. H. & Taylor, W. R., A structural model for the retroviral proteases, Nature, 329 (1987) 351.

    Article  PubMed  CAS  Google Scholar 

  36. Blundell, T. & Pearl, L., Retroviral proteases: A second front against AIDS, Nature, 337 (1989) 596.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 SCI

About this chapter

Cite this chapter

Osguthorpe, D.J., Luni, G.G., Cockcroft, V.B. (1992). From Molecular Biology to Molecular Modelling: The Nicotinic Acetylcholine Receptor. In: Duce, I.R. (eds) Neurotox ’91. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2898-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2898-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-746-8

  • Online ISBN: 978-94-011-2898-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics