Skip to main content

Functional Expression in Xenopus Oocytes of Invertebrate Ligand-Gated Ion Channels

  • Chapter
Neurotox ’91

Abstract

Ligand-gated ion channels are hetero- or homo-oligomeric proteins exhibiting pseudosymmetry, with polypeptide subunits arranged around a central hydrophilic pore.1 The channels directly operated by neurotransmitters belong to this class of membrane proteins in which the channel is an integral part of the receptor protein.2 Ligand-gated ion channels have been particularly well studied in mammals, and targets for several chemically distinct classes of medicinal drugs have been recognised. Investigations of invertebrate ligand-gated ion channels have revealed target sites for insecticides and anthelmintics.3 DNA cloning of polypeptide subunits of ligand-gated ion channel molecules has been achieved in the case of skeletal muscle, electric tissue4 and nervous system nicotinic acetylcholine receptors5 of vertebrates. Subunits of vertebrate GABAA,6 glycine7 and L-glutamate receptors8 have also been cloned recently, and the cells most widely used to test for functional expression of putative subunits are the oocytes of Xenopus laevis. 9 These cells permit expression in the plasma membrane of functional neurotransmitter-operated ion channels following cytoplasmic injection of crude RNA, poly-adenylated (messenger) RNA (poly (A)+ mRNA) and cDNA-derived mRNA. Functional channels of this type can also be expressed as a result of nuclear injection of cDNA and an appropriate promoter.10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unwin, N., The structure of ion channels in membranes of excitable cells. Neuron, 3 (1989) 665–676.

    Article  PubMed  CAS  Google Scholar 

  2. Barnard, E. A., Darlison, M. G., Marshall, J. & Sattelle, D. B., Structural characteristics of cation and anion channels directly operated by agonists. In Ion Transport, ed. D. J. Keeling & C. D. Benham. Academic Press, San Diego, 1989, pp. 242–246.

    Google Scholar 

  3. Sattelle, D. B., Synaptic and extrasynaptic neuronal nicotinic receptors of insects. In Nicotinic Acetylcholine Receptors in the Nervous System, NATO ASI Series, Vol. H25, ed. F. Clementi, C. Gotti & E. Sher. Springer-Verlag, Berlin, 1988, pp. 241–256.

    Google Scholar 

  4. Claudio, T., Molecular genetics of acetylcholine receptor channels. In Molecular Neurobiology, ed. D. M. Glover and B. D. Harnes. Oxford University Press, Oxford, UK, 1989, pp. 63–142.

    Google Scholar 

  5. Lindstrom, J., Schoepfer, R. & Whiting, P., Molecular studies of the neuronal nicotinic acetylcholine receptor family. Mol. Neurobiol., 1 (1987) 218–337.

    Article  Google Scholar 

  6. Seeburg, P. H., Widen, W., Verdooni, T. A., Pritchett, D. B., Werner, P., Herb, A., Luddens, H., Sprengel, R. & Sachmann, B., The GABAA receptor family: molecular and functional diversity. In The Brain Cold Spring Harbor Symposia in Quantitative Biology, Vol. LV, Cold Spring Harbor Press, Plainview, New York, 1991, pp. 29–40.

    Google Scholar 

  7. Betz, H., Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Neuron, 5 (1990) 383–392.

    Article  PubMed  CAS  Google Scholar 

  8. Heinemann, S., Bettler, B., Boulter, J., Deneris, E., Gasic, C, Hartley, M., Hollman, M., Hughes, T. E., O’Shea-Greenfield, A. & Rogers, S., The glutamate receptor gene family. In Excitatory Amino Acids Fidia Research Foundation Symposium Series, Vol. 5, eds. B. S. Meldrum, F. Moroni, R. P. Simon & J. H. Woods. Raven Press, New York, 1991, pp. 109–113.

    Google Scholar 

  9. Barnard, E. A. & Bilbe, G., Functional expression in the Xenopus oocyte of messenger RNAs for receptors and ion channels. In Neurochemistry: A Practical Approach, ed. A. J. Turner & H. S. Bachelard. IRL Press, Oxford and Washington, DC, 1987, pp. 243–268.

    Google Scholar 

  10. Ballivet, M., Nef, P., Couturier, S., Rungger, D., Bader, C. R., Bertrand, D. & Cooper, E., Electrophysiology of a chick neuronal acetylcholine receptor expressed in Xenopus oocytes after cDNA injection. Neuron, 1 (1988) 847–852.

    Article  PubMed  CAS  Google Scholar 

  11. Hermans-Borgmeyer, I., Zopf, D., Ryseck, R. P., Hovermann, B., Betz, H. & Gundelfinger, E. D., Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EMBO J., 5 (1986) 1503–1508.

    CAS  Google Scholar 

  12. Bossy, B., Ballivet, M. & Spierer, P., Conservation of neuronal nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J., 7 (1988) 611–618.

    PubMed  CAS  Google Scholar 

  13. Gundelfinger, E. D., Hermans-Borgmeyer, I., Schloss, P., Sawruk, E., Udri, C, Vingron, M., Betz, H. & Schmitt, B., Ligand-gated ion channels of Drosophila. In Nicotinic Acetylcholine Receptors in the Nervous System NATO ASI Series, Vol. H25, ed. F. Clementi, C. Gotti & E. Sher. Springer-Verlag, Berlin, 1988, pp. 69–81.

    Google Scholar 

  14. Marshall, J., David, J. A., Darlison, M. G., Barnard, E. A. & Sattelle, D. B., Pharmacology, cloning and expression of insect nicotinic acetylcholine receptors. In Nicotinic Acetylcholine Receptors in the Nervous System, NATO ASI Series, Vol. H25, ed. F. Clementi, C. Gotti & E. Sher. Springer-Verlag, Berlin, 1988, pp. 257–281.

    Google Scholar 

  15. Marshall, J., Buckingham, S. D., Shingai, R., Lunt, G. G., Goosey, M. W., Darlison, M. G., Sattelle, D. B. & Barnard, E. A., Sequence and functional expression of a single ar-subunit of an insect nicotinic acetylcholine receptor. EMBO J., 9 (1990) 4391–4398.

    PubMed  CAS  Google Scholar 

  16. Sawruk, E., Hermans-Borgmeyer, I., Betz, H. & Gundelfinger, E., Characterization of an invertebrate nicotinic acetylcholine receptor gene: the ard gene of Drosophila melanogaster. FEBS Letts., 235 (1988) 40–46.

    CAS  Google Scholar 

  17. Sawruk, E., Schloss, P., Betz, H. & Schmitt, B., Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated ar-subunit. EMBO J., 9 (1990) 2671–2677.

    PubMed  CAS  Google Scholar 

  18. Baumann, A., Jonas, P. & Gundelfinger, E. D., Sequence of Dα2, a novel α-like subunit of Drosophila nicotinic acetylcholine receptors. Nucleic Acids Research, 18 (1990) 3640 P.

    Article  PubMed  CAS  Google Scholar 

  19. Lewis, J., Wu, C. H., Berg, H. & Levine, J. H., The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics, 95 (1980) 905–928.

    CAS  Google Scholar 

  20. Gurdon, J. B., Lane, C. D., Woodland, H. R. & Marbaix, G., Use of frogs eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature, 233 (1971) 177–180.

    Article  PubMed  CAS  Google Scholar 

  21. Smart, T. G., Houamed, K. M., Van Renterghem, C. & Constanti, A., mRNA directed synthesis and insertion of functional amino acid receptors in Xenopus laevis oocytes. Biochem. Soc. Trans., 15 (1987) 117–122.

    PubMed  CAS  Google Scholar 

  22. Blount, P. & Merlie, J. P., Molecular basis of the two non-equivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron, 3 (1989) 3490–3507.

    Article  Google Scholar 

  23. Blount, P., Smith, M. M. & Merlie, J. P., Assembly intermediate of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts. J. Cell Biol., 111 (1990) 2601–2611.

    Article  PubMed  CAS  Google Scholar 

  24. Yu, X.-M. & Hall, Z. W., Extracellular domains mediating e subunit interaction of muscle acetylcholine receptor. Nature, 352 (1991) 64–67.

    Article  PubMed  CAS  Google Scholar 

  25. Barnard, E. A., Miledi, R. & Sumikawa, K., Translation of exogenous messenger RNA coding for the nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. (Lond.) B, 215 (1982) 241–246.

    Article  CAS  Google Scholar 

  26. Gundersen, C. B., Miledi, R. & Parker, I., Voltage-operated channels by foreign messenger RNA in Xenopus oocytes. Proc. R. Soc. (Lond.) B, 220 (1983) 131–140.

    Article  CAS  Google Scholar 

  27. Dascal, N., The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem., 22 (1987) 317–385.

    Article  PubMed  CAS  Google Scholar 

  28. Snutch, T. P., The use of Xenopus oocytes to probe synaptic communication. TINS, 11 (1988) 250–256.

    PubMed  CAS  Google Scholar 

  29. Sattelle, D. B., Acetylcholine receptors of insects. Adv. Insect Physiol., 15 (1980) 215–315.

    Article  CAS  Google Scholar 

  30. Breer, H. & Sattelle, D. B., Molecular properties and functions of insect acetylcholine receptors. J. Insect Physiol, 33 (1987) 771–790.

    Article  CAS  Google Scholar 

  31. Lummis, S. C. R., GABA receptors in insects. Comp. Biochem. Physiol., 95C (1990) 1–8.

    CAS  Google Scholar 

  32. Rauh, J. J., Lummis, S. C. R. & Sattelle, D. B., Pharmacological and biochemical properties of insect GABA receptors. TIPS, 11 (1990) 325–329.

    PubMed  CAS  Google Scholar 

  33. Sattelle, D. B., GABA receptors of insects. Adv. Insect Physiol., 22 (1990) 1–113.

    Article  Google Scholar 

  34. David, J. A. & Sattelle, D. B., Ionic basis of membrane potential and of acetylcholine-induced currents in the cell body of the cockroach fast coxal depressor motor neurone. J. Exp. Biol, 151 (1990) 21–39.

    CAS  Google Scholar 

  35. Breer, H., Kleene, R. & Hinz, G., Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects. J. Neurosci., 5 (1985) 3386–3392.

    PubMed  CAS  Google Scholar 

  36. Sattelle, D. B. & Breer, H., Purification by affinity chromatography of a nicotinic acetylcholine receptor from the CNS of the cockroach Periplaneta americana. Comp. Biochem. Physiol., 820 (1985) 349–352.

    Article  Google Scholar 

  37. Hanke, W. & Breer, H., Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature, 321 (1986) 171–174.

    Article  PubMed  CAS  Google Scholar 

  38. Breer, H. & Benke, D., Synthesis of acetylcholine receptors in Xenopus oocytes induced by poly A-mRNA from locust nervous tissue. Naturwissenchaften, 72 (1985) 213–214.

    Article  CAS  Google Scholar 

  39. Breer, H. & Benke, D., Messenger RNA from insect nervous tissue induces expression of neuronal acetylcholine receptors in Xenopus oocytes. Mol Brain Res., 1 (1986) 111–117.

    Article  CAS  Google Scholar 

  40. Bowery, N., Classification of GABA receptors. In The GABA Receptors, ed. S. J. Enna. Humana Press, Clifton, New Jersey, 1983, pp. 173–213.

    Google Scholar 

  41. Bowery, N., Classification of GABA receptors. In The GABA Receptors, ed. S. J. Enna. Humana Press, Clifton, New Jersey, 1983, pp. 173–213.

    Google Scholar 

  42. Lummis, S. C. R. & Sattelle, D. B., Binding sites for [3H]GABA, [3H]flunitrazepam and [35S]TBPS in insect CNS. Neurochem. Int., 9 (1986) 287–293.

    Article  PubMed  CAS  Google Scholar 

  43. Le Fur, G., Peripheral benzodiazepine binding sites. In GABA and Benzodiazepine Receptors, ed. R. F. Squires. CRC Press, Boca Raton, Florida, 1988, pp. 15–34.

    Google Scholar 

  44. Robinson, T. M., MacAllan, D., Lunt, G. G. & Battersby, M., γ-Aminobutyric acid receptor complex of insect CNS: characterization of benzodiazepine binding sites. J. Neurochem., 47 (1986) 1955–1962.

    Article  PubMed  CAS  Google Scholar 

  45. Ffrench-Constant, R. H., Mortlock, D. P., Shaffer, C. D., MacIntyre, R. J. & Roush, R. T., Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate γ-aminobutyric acid subtype A receptor locus. Proc. Natl Acad. Sci. USA, 88 (1991) 7209–7213.

    Article  PubMed  CAS  Google Scholar 

  46. Sattelle, D. B., Marshall, K., Lummis, S. C. R., Leech, C. A., Miller, K. W. P., Anthony, N. M., Bai, D., Wafford, K. A., Harrison, J. B., Chapaitis, L. A., Watson, M. K., Benner, E. A., Vassallo, J. G., Wong, J. F. & Rauh, J. J., GABA and L-glutamate receptors of insect nervous tissue. In Transmitter Amino Acid Receptors: Structures Transduction and Models for Drug Development, ed. E. Costa. Raven Press, New York, 1991, 273–291.

    Google Scholar 

  47. Sattelle, D. B., Marshall, K., Lummis, S. C. R., Leech, C. A., Miller, K. W. P., Anthony, N. M., Bai, D., Wafford, K. A., Harrison, J. B., Chapaitis, L. A., Watson, M. K., Benner, E. A., Vassallo, J. G., Wong, J. F. & Rauh, J. J., GABA and L-glutamate receptors of insect nervous tissue. In Transmitter Amino Acid Receptors: Structures Transduction and Models for Drug Development, ed. E. Costa. Raven Press, New York, 1991, 273–291.

    Google Scholar 

  48. Fraser, S. P., Djamgoz, M. B. A., Usherwood, P. N. R., O’Brien, J., Darlison, M. G. & Barnard, E. A., Amino acid receptors from insect muscle: electrophysiological characterization in Xenopus oocytes following expression by injection of mRNA. Mol. Brain Res., 8 (1990) 331–341.

    Article  PubMed  CAS  Google Scholar 

  49. Gration, K. A. F., Activation of ion channels in locust muscle by amino acids. In Neuropharamacology of insects Ciba Foundation Symposium 88, ed. M. O’Connor & J. Whelan. Pitman, London, 1982, pp. 240–259.

    Google Scholar 

  50. Usherwood, P. N. R., Neuromuscular transmitter receptors of insect muscle. In Receptors for Neurotransmitters, Hormones and Pheronomes in Insects, ed. D. B. Sattelle, L. M. Hall & J. G. Hildebrand. Elsevier, Amsterdam, 1980, pp. 141–153.

    Google Scholar 

  51. Cull-Candy, S. G., Two types of extrajunctional L-glutamate receptors in locust muscle. J. Physiol (Lond.), 255 (1976) 449–464.

    CAS  Google Scholar 

  52. Anwyl, R., Permeability of the post-synaptic membrane of an excitatory glutamate synapse to sodium and potassium. J. Physiol., 273 (1977) 367–388.

    PubMed  CAS  Google Scholar 

  53. Walker, R. J., Neurotransmitter receptors in invertebrates. In Receptors for Neurotransmitters, Hormones and Pheromones in Insects, ed. D. B. Sattelle, L. M. Hall & J. G. Hildebrand. Elsevier/North Holland Biomedical Press, Amsterdam, 1980, pp. 41–57.

    Google Scholar 

  54. Giles, D. & Usherwood, P. N. R., The effects of putative amino acid neurotransmitters on somata isolated from neurons of the locust central nervous system. Comp. Biochem. Physiol., 80C (1985) 231–236.

    Article  CAS  Google Scholar 

  55. Wafford, K. A. & Sattelle, D. B., Actions of putative amino-acid neurotransmitters on an identified insect motoneurone. Neurosci. Lett., 63 (1986) 135–140.

    Article  PubMed  CAS  Google Scholar 

  56. Wafford, K. A. & Sattelle, D. B., L-Glutamate receptors on the cell body membrane of an identified insect motor neurone. J. exp. Biol., 144 (1988) 449–462.

    Google Scholar 

  57. Horseman, B. G., Seymour, C, Bermudez, I. & Beadle, D. J., The effects of L-glutamate on cultured insect neurons. Neurosci. Letts., 85 (1988) 65–70.

    Article  CAS  Google Scholar 

  58. Wafford, K. A., Bai, D., Sepulveda, M.-I. & Sattelle, D. B., L-Glutamate receptors in the insect central nervous system. In Excitatory Amino Acids Fidia Research Foundation Symposium Series, Vol. 5, ed. B. S. Meldrum, F. Moroni, R. P. Simon & J. H. Woods. Raven Press, New York, 1991, pp. 275–279.

    Google Scholar 

  59. Kawai, N., Saito, M. & Ohsako, S., Differential expression of glutamate receptors in Xenopus oocytes injected with messenger RNA from lobster muscle. Neurosci. Lett., 93 (1989) 203–207.

    Google Scholar 

  60. Couturier, S., Bertrand, D., Matter, J.-M., Hernandez, M.-C, Bertrand, S., Millar, N., Valera, S., Barkas, T. & Ballivet, M., A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron, 5 (1990) 847–856.

    Article  PubMed  CAS  Google Scholar 

  61. Sattelle, D. B., Harrow, I. D., Hue, B., Pelhate, M., Gepner, J. I. & Hall, L. M., α-Bungarotoxin blocks excitatory synaptic transmission between cereal sensory neurones and giant interneurone 2 of the cockroach. Periplaneta americana. J. exp. Biol., 107 (1983) 473–489.

    CAS  Google Scholar 

  62. Pinnock, R. D., Lummis, S. C. R., Chiappinelli, V. A. & Sattelle, D. B., K-Bungarotoxin blocks an ar-bungarotoxin-sensitive nicotinic receptor in the insect central nervous system. Brain Res., 458 (1988) 45–52.

    Article  PubMed  CAS  Google Scholar 

  63. Chiappinelli, V. A., Hue, B., Mony, L. & Sattelle, D. B., k-Bungarotoxin blocks nicotinic transmission at an identified invertebrate central synapse. J. exp. Biol., 141 (1989) 61–71.

    PubMed  CAS  Google Scholar 

  64. Benson, J. A., Transmitter receptors on insect neuronal somata. GABAergic and cholinergic pharmacology. In Neurotox 1988: Molecular Basis of Drug and Pesticide Action, ed. G. G. Lunt. Elsevier, Amsterdam, New York, 1988, pp. 193–205.

    Google Scholar 

  65. Schloss, P., Hermans-Borgmeyer, I., Betz, H. & Gundelfinger, E., Neuronal acetylcholine receptors in Drosophila: the ARD proteins is a component of a high affinity α-bungarotoxin binding complex. EMBO J., 7 (1988) 2889–2894.

    PubMed  CAS  Google Scholar 

  66. Coulson, A., Sulston, J., Brenner, S. & Karn, J., Towards a physical map of the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA, 83 (1986) 7821–7825.

    Article  CAS  Google Scholar 

  67. Fleming, J. T., Riina, H. A. & Sattelle, D. B., Acetylcholine and GABA receptors of Caenorhabditis elegans expressed in Xenopus oocytes. J. Physiol., 438 (1991) 371 P.

    Google Scholar 

  68. Harrow, I. D. & Gration, K. F., Mode of action of the anthelmintics, morantel, pyrantel and levamisole on the muscle cell membrane of the nematode Ascaris suum. Pestic. Sci., 16 (1985) 622–624.

    Google Scholar 

  69. Del Castillo, J., De Mello, W. C. & Morales, T. A., The physiological role of acetylcholine in the neuromuscular system of Ascaris lumbricoides. Arch. Int. Physiol., 71 (1963) 741–757.

    Article  Google Scholar 

  70. Holden-Dye, L., Hewitt, G. M., Wann, K. T., Krogsgaard-Larsen, P. & Walker, R. J., Studies involving avermectin and the 4-aminobutyric acid (GABA) receptor of Ascaris suum muscle. Pestic. Sci., 24 (1988) 231–245.

    Article  CAS  Google Scholar 

  71. Arena, J. P., Cully, D. F., Liu, K. K. S. & Paress, P. S., Properties of a glutamate-sensitive membrane current in Xenopus oocytes injected with Caenorhabditis elegans mRNA. Pestic. Sci. (1991) (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 SCI

About this chapter

Cite this chapter

Sattelle, D.B., Lummis, S.C.R., Riina, H.A., Fleming, J.T., Anthony, N.M., Marshall, J. (1992). Functional Expression in Xenopus Oocytes of Invertebrate Ligand-Gated Ion Channels. In: Duce, I.R. (eds) Neurotox ’91. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2898-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2898-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-746-8

  • Online ISBN: 978-94-011-2898-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics