Skip to main content

The Molecular Biology of Potassium Channels and Mutations that Alter the Selectivity of the Pore

  • Chapter
  • 59 Accesses

Abstract

Molecular biology and Drosophila genetics have combined to give us an enormous amount of information about K+ channels. Work in many labs has resulted in the cloning of a large family of these channels. Originally cloned in Drosophila, homologs in other species have been isolated as well. Diversity within the family is generated by several mechanisms: six different classes of K+ channel genes, multiple closely related genes within a single class, and alternative RNA splicing within a single gene. Easy and abundant expression of the cloned channels in Xenopus oocytes has promoted structure/function studies. Our lab has concentrated on identifying the pore of the channel and characterizing mutations that alter ion selectivity. Starting with the ShB splicing variant from the Shaker locus, we have identified mutations within a region called H5 that greatly enhance the ability of Rb+ and NH4+ to pass through the channel. This H5 region is highly conserved in all the K+ channel sequences of the family and has an intermediate hydrophobicity. One model is proposed, involving an eight-strand beta-barrel, that could account for the physiological data now in hand. Because of the intrinsic interest of the mechanism of ion permeation, and because of the importance of the pore as a site of pharmacological intervention, elucidating the detailed nature of the pore will be an important area for future study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Novitski, E., Shaker—report of a new mutant. Drosophila Information Service, 23 (1949) 61 - 62.

    Google Scholar 

  2. Jan, Y. N., Jan, L. Y. & Dennis, M., Two mutations of synaptic transmission in Drosophila. Proc. Roy. Soc. London, B Biol. Sci., 198 (1977) 87 - 108.

    Article  CAS  Google Scholar 

  3. Salkoff, L., Genetic and voltage clamp analysis of a Drosophila potassium channel. Cold Spring Harbor Symp. Quant. Biol, 48 (1983) 221 - 231.

    CAS  Google Scholar 

  4. Tanouye, M., Ferrus, A. & Fujita, S., Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc. Natl. Acad. Sci. USA, 78 (1981) 6548 - 6552.

    Article  PubMed  CAS  Google Scholar 

  5. Papazian, D., Schwarz, T., Tempel, B., Jan, Y. N. & Jan, L. Y., Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science, 237 (1987) 749 - 753.

    Article  PubMed  CAS  Google Scholar 

  6. Kamb, A., Iverson, L. & Tanouye, M., Molecular characterization of Shaker, a gene that encodes a potassium channel. Cell, 50 (1987) 405 - 413.

    Article  PubMed  CAS  Google Scholar 

  7. Baumann, A., Krah-Jentgens, I., Mueller, R., Mueller-Holtkamp, F., Seidel, R., Kecskemethy, N., Casal, J., Ferrus, A. & Pongs, O., Molecular organization of the maternal effect region of the Shaker complex of Drosophila: characterization of an IA channel transcript with homology to vertebrate Na+ channel. EMBO J., 6 (1987) 3419 - 3429.

    PubMed  CAS  Google Scholar 

  8. Tempel, B., Papazian, D., Schwarz, T., Jan, Y. N. & Jan, L., Sequence of a probable potassium channel component encoded at the Shaker locus of Drosophila. Science, 237 (1987) 770 - 775.

    Article  PubMed  CAS  Google Scholar 

  9. Stuhmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H. & Numa, S., Structural parts involved in activation and inactivation of the sodium channel. Nature, 339 (1989) 597 - 603.

    Article  PubMed  CAS  Google Scholar 

  10. Papazian, D., Timpe, L., Jan, Y. N. & Jan, L. Y., Alteration of voltage-dependence of Shaker potassium channel by mutations in S4 sequence. Nature, 349 (1991) 305 - 310.

    Article  PubMed  CAS  Google Scholar 

  11. Zagotta, W., Hoshi, T. & Aldrich, R., Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science, 250 (1990) 568 - 571.

    Article  PubMed  CAS  Google Scholar 

  12. Guy, H. & Seetharamulu, P., Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA, 83 (1986) 508 - 512.

    Article  PubMed  CAS  Google Scholar 

  13. MacKinnon, R., Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature, 350 (1991) 232 - 235.

    Article  PubMed  CAS  Google Scholar 

  14. Tempel, B., Jan, Y. N. & Jan, L. Y., Cloning of a probable potassium channel gene from mouse brain. Nature, 232 (1988) 837 - 839.

    Article  Google Scholar 

  15. Kamb, A., Weir, M., Rudy, B., Varmus, H. & Kenyon, C, Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification. Proc. Natl. Acad. Sci. USA, 87 (1989) 4372 - 4376.

    Article  Google Scholar 

  16. Butler, A., Wei, A., Baker, K. & Salkoff, L., A family of putative potassium channel genes in Drosophila. Science, 243 (1989) 943 - 947.

    Article  PubMed  CAS  Google Scholar 

  17. Frech, G., VanDongen, A., Schuster, G., Brown, A. & Joho, R., A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature, 340 (1989) 642 - 645.

    Article  PubMed  CAS  Google Scholar 

  18. Warmke, J. W., Drysdale, R. & Ganetzky, B., A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science, 252 (1991) 1560 - 1562.

    Article  PubMed  CAS  Google Scholar 

  19. Atkinson, N., Robertson, G. & Ganetzky, B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science, 253 (1991) 551 - 555.

    Article  PubMed  CAS  Google Scholar 

  20. Takumi, T., Ohkubo, H. & Nakanishi, S., Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science, 42A (1988) 1042 - 1045.

    Article  Google Scholar 

  21. Wei, A., Covarrubias, M., Butler, A., Baker, K., Pak, M. & Salkoff, L., K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science, 248 (1990) 599 - 603.

    Article  PubMed  CAS  Google Scholar 

  22. Elkins, T., Ganetzky, B. & Wu, C.-F., A Drosophila mutation that eliminates a calcium-dependent potassium current. Proc. Natl. Acad. Sci. USA, 83 (1986) 8415 - 8419.

    Article  PubMed  CAS  Google Scholar 

  23. Schwarz, T., Tempel, B., Papazian, D., Jan, Y. N. & Jan, L. Y., Multiple potassium channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature, 331 (1988) 137 - 142.

    Article  PubMed  CAS  Google Scholar 

  24. Luneau, C, Smith, J. & Williams, J. Molecular cloning of.a rat brain K+ channel family with homology to Shaw. Biophysical J., 59 (1991) 451a.

    Google Scholar 

  25. Timpe, L., Schwarz, T., Tempel, B., Papazian, D., Jan, Y. N. & Jan, L. Y., Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature, 331 (1988) 143 - 145.

    Article  PubMed  CAS  Google Scholar 

  26. Isacoff, E., Jan, Y. N. & Jan, L. Y., Evidence for the formation of heteromul-timeric potassium channels in Xenopus oocytes. Nature, 345 (1990) 530 - 534.

    Article  PubMed  CAS  Google Scholar 

  27. Covarrubias, M., Wei, A. & Salkoff, L., Four cloned K+ channel subfamilies are independent current systems. Biophysical J., 59 (1991) 3a.

    Google Scholar 

  28. Yool, A. & Schwarz, T., Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature, 349 (1991) 700 - 704.

    Article  PubMed  CAS  Google Scholar 

  29. Hille, B., Potassium channels in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol., 61 (1973) 669 - 686.

    Article  PubMed  CAS  Google Scholar 

  30. Eisenmann, G. & Horn, R., Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels. J. Memb. Biol., 76 (1983) 197 - 225.

    Article  Google Scholar 

  31. MacKinnon, R. & Yellen, G., Mutations affecting blockade and ion permeation in voltage-activated potassium channels. Science, 250 (1990) 276 - 280.

    Article  PubMed  CAS  Google Scholar 

  32. Yellen, G., Jurman, M., Abramson, T. & MacKinnon, R., Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science, 251 (1991) 939 - 942.

    Article  PubMed  CAS  Google Scholar 

  33. Hartmann, H., Kirsch, G., Drewe, J., Taglialatela, M., Joho, R. & Brown, A., Exchange of conduction pathways between two related K+ channels. Science, 251 (1991) 942 - 944.

    Article  PubMed  CAS  Google Scholar 

  34. Imoto, K., Busch, B., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K. & Numa, S., Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature, 313 (1988) 645 - 648.

    Article  Google Scholar 

  35. Hille, B., The permeability of the sodium channel to organic cations in myelinated nerve. J. Gen. Physiol, 58 (1971) 599 - 619.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 SCI

About this chapter

Cite this chapter

Schwarz, T.L., Yool, A.J. (1992). The Molecular Biology of Potassium Channels and Mutations that Alter the Selectivity of the Pore. In: Duce, I.R. (eds) Neurotox ’91. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2898-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2898-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-746-8

  • Online ISBN: 978-94-011-2898-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics