Skip to main content

Abstract

A low cost, high fracture toughness silicon nitride material can be obtained through the in-situ growth of whisker-like elongated grains. This ability to form a reinforced material in-situ during densification avoids the processing difficulties and potential health hazards generally associated with whisker reinforced ceramic composites. The in-situ growth of elongated silicon nitride grains is controlled by the glass phase chemistry and processing conditions. A new class of self-reinforced silicon nitride materials have been developed based upon the Si3N4-Y2O3-MgO-CaO system, where yttrium can be replaced by seven other elements, magnesium can be replaced by six other elements and calcium with 19 other elements. These compositions have been found to yield fine grained, high aspect ratio silicon nitride ceramics with a unique combination of high flexure strength and fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Drew P., Lewis M.H., The microstructures of silicon nitride ceramics during hot pressing transformations, J Mat Sci., 1974, 9, pp. 261–69.

    Article  Google Scholar 

  2. Lange F.F., Fracture toughness of Si3N4 as a function of the initial α-phase content, J. Amer. Ceram. Soc, 1979, 62, pp. 428–30.

    Article  Google Scholar 

  3. Wotting G., Kanka B.,and Ziegler G., Microstructural development, microstructural characterization and relation to mechanical properties of dense silicon nitride. In Non-Oxide Technical and Engineering Ceramics, ed. S. Hampshire, Elsevier, London, 1986, pp. 83–96.

    Chapter  Google Scholar 

  4. Selkregg K.R, More K.L., Seshadri S.G.,and McMurty C.H., Microstructural characterization of silicon nitride ceramics processed by pressureless sintering, overpressure sintering, and sinter hip, Ceram. Eng. Sci. Proc. 1990, 11, 7-8, pp. 603–15.

    Article  Google Scholar 

  5. Lee RR, Nowich B.E., Franks G., Quellette D., Milford M.A., Ferber M.K., Hubbard C.R, and More K., Duophase sialon for ceramic engine component application, presented at the 93rd American Ceram. Soc. Mtg., Cincinnati, OH, April 29, 1991.

    Google Scholar 

  6. Quinn G. D. and Braue W.R., Secondary phase devitrification effects upon the static fatigue resistance of sintered silicon nitride, Ceram Eng. Proc, 1990, 11, 7-8, pp. 616–632.

    Article  Google Scholar 

  7. Shang-Xian, Wu, Compliance and stress-intensity factor of chevron-notched three-point bend specimen, Chevorn-Notched Specimens’ Testine-and Stress Analysis ASTM STP 855, ed. S. W. Frieman and F. I. Baratta, ASTM, Philadelphia, 1984, pp.177–192.

    Google Scholar 

  8. Pyzik J.A, Beaman D.R., Self-reinforced silicon nitride, J Amer Ceram Soc, to be published.

    Google Scholar 

  9. Pyzik A.J., Dubensky W.J., Schwarz D.B., and Beaman D.R., U.S. Pat. No. 4, 883, 776, 1989.

    Google Scholar 

  10. Pyzik A.J., Schwarz D.B., Dubensky W.J., and Beaman D.R., U.S. Pat. No. 4, 919, 689, 1990.

    Google Scholar 

  11. Pyzik A.J., Schwarz D.B., Beaman D.R. and Dubensky W. J., U.S. Pat. No. 5, 021, 372, 1991.

    Google Scholar 

  12. Vincenzini P. and Babini G.N., The influence of secondary phases on densification, microstructure and properties of hot pressed silicon nitride, In Sintered Metal-Ceramic Composites ed. by G.S. Upadhyaya, Elsevier Sci. Publish., Amsterdam, Niderlands, 1984, pp. 425–54.

    Google Scholar 

  13. Brice J.C., The growth of crystals from liquids, ed. E.P. Wohlfarth, Selected Topics In Solid State Physics, v. 12, Nort Holland/American Elsevier, London, 1973, pp. 227–45.

    Google Scholar 

  14. Khamskii E.V., Crystallization From Solutions, Consultants Bureau, New York-London, 1969, pp. 47–8.

    Google Scholar 

  15. Hwang C.J and Tien T.Y., Microstructural development in silicon nitride ceramics, Material Science Forum, 1989, 47, pp. 84–109.

    Article  Google Scholar 

  16. Becher P.F., Microstructural design of toughened ceramics, J Amer Ceram Soc, 1991, 74, 2, pp. 255–69.

    Article  Google Scholar 

  17. Li, C. W. and Yamanis, J., Super-tough silicon nitride with R-curve behavior, Ceram. Eng Sci. Proc, 10, (7-8), 1990, pp. 632–645.

    Google Scholar 

  18. Hwang C.J. and Tien T.Y., A critical evaluation of the microstructural effect on the fracture toughness of silicon nitride, presented at the 90th American Ceram Soc Mtg., Cincinnati OH, 1988.

    Google Scholar 

  19. Ito J., Silicate Apatites and Oxyapatites, Am Mineralogist, 53, 1968, pp. 890–907.

    Google Scholar 

  20. Samanta S.K., and Subramanian K., Hot pressed Si3N4 as a high performance cutting tool material, Proc. 13th N Amer. Manufact. Res. Conf., SME, Dearborn Michigan, 1985, pp.402–407.

    Google Scholar 

  21. Kramer B.M., On tool materials for high speed machining, ASME Prod. Ene-. Div., 1984, 12, pp.127–40.

    Google Scholar 

  22. Baldoni J.G., Wayne F., and Buljan S.T., Cutting tool materials: mechanical properties — wear-resistance relationships, ASLE Trans, 1985, 29, 3, pp. 347–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd and MPA Stuttgart

About this chapter

Cite this chapter

Pyzik, A.J., Carroll, D.F., Hwang, C.J., Prunier, A.R. (1992). Self-Reinforced Silicon Nitride — A new Microengineered Ceramic. In: Carlsson, R., Johansson, T., Kahlman, L. (eds) 4th International Symposium on Ceramic Materials and Components for Engines. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2882-7_63

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2882-7_63

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-776-5

  • Online ISBN: 978-94-011-2882-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics