Skip to main content

The Complete Double Layer Boundary Integral Equation Method for Particles Moving Close to Boundaries

  • Chapter
Boundary Elements in Fluid Dynamics
  • 260 Accesses

Abstract

The problem of determining the slow motion of a particle of arbitrary shape near a plane boundary, rigid or not, in a viscous fluid is formulated exactly as a system of linear Fredholm integral equations of the second kind, by completing the deficient range of a double layer potential and using the adequate image system needed to satisfy the boundary or matching conditions at the boundary. It is shown that this system of integral equations possesses a unique continuous solution when the boundary of the particle is a Lyapunov surface and the velocity data on the boundary surface is continuous and this system is used as the basis of a numerical model that uses standard boundary element techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lorentz, H.A.: Ein Allgemeiner Satz, die Bewegung einer Reibenden Flussigkeit Betreffend, nebst einegen Anwendungen desselben (A General Theorem Concerning the Motion of a Viscous Fluid and a Few Consequences Dervived from it), Versl. Kon. Akad. Wetenseh., Vol. 5. (1896)

    Google Scholar 

  2. Youngreen, G.K. and Acrivos, A.: Viscous Flows Past a Spheroid, J. Fluid Mech., Vol. 69. (1975)

    Google Scholar 

  3. Power, H.; Miranda, G. and Gonzalez, R.: Integral Equation Solution for the Flow Due to the Motion of a Body of Arbitrary Shape near a Plane Wall at Small Reynolds Number, Math. Aplie. Comp., Vol. 4. (1985)

    Google Scholar 

  4. Hsu, R. and Ganatos, P.: The Motion of a Rigid Body in Viscous Fluid Bounded by a Plane Wall, J. Fluid Mech., Vol. 207. (1989)

    Google Scholar 

  5. Power, H., Garcia, R. and Miranda, G.: Integral Equation Solution for the Flow Due to the Motion of a Body of Arbitrary Shape near a Plane Interface at Small Reynolds Number, Applied Numerical Math., Vol. 2. (1986)

    Google Scholar 

  6. Weinbaum, S. and Ganatos, P.: Numerical Multipole and Boundary Integral Equation Techniques in Stokes Flow, Annu. Rev. Fluid Mech., Vol. 22. (1990)

    Google Scholar 

  7. Goldberg, M.A.: Solution Methods for Integral Equations. Theory and Aplications, Plenum Press, New York. (1978)

    Google Scholar 

  8. Karrila, S.J. and Kim, S.: Integral Equations of the Second Kind for Stokes Flow: Direct Solution for Physical Variables and Removal of Inherent Accuracy Limitations, Chem. Eng. Commun., Vol. 82. (1989)

    Google Scholar 

  9. Power, H. and Miranda, G.: Second Kind Integral Equation Formulation of Stokes Flows Past a Particle of Arbitrary Shape, SIAM Appl., Vol. 47. (1987)

    Google Scholar 

  10. Power, H.: Second Kind Integral Equation Solution of Stokes Flows Past n Bodies of Arbitrary Shapes, 9th Int. Conf. on BEM, Sttutgard, Computational Mechanics Publications, Southampton and Springer Verlag, Berlin. (1987)

    Google Scholar 

  11. Power, H. and Miranda, G.: Integral Equation Formulation for the Creeping Flow of an Incompressible viscous Fluid between Two Arbitrarily Closed Surfaces and a Possible Mathematical Model for the Brain Fluid Dynamics, J. Math. Anal. and Appl., Vol. 137. (1989)

    Google Scholar 

  12. Karrila, S.J.; Fuentes, Y.O. and Kim, S.: Parallel Computational Strategies for Hydrodynamic Interactions between Rigid Particles of Arbitrary Shape in a Viscous Fluid, J. Rheolog., Vol. 33. (1989)

    Google Scholar 

  13. Gunter, N.M.: Potential Theory and its Applications to Basic Problems, Frederick Ungar Publishing, New York. (1967)

    Google Scholar 

  14. Karrila, S.J. and Kim, S.: Foundations of Parallel Computational Microhydrodynamics: The Completed DoubleLayer Boundary Integral Equation Method, Univ. of Wisconsin-Madison, RRC123. (1991)

    Google Scholar 

  15. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow, Gordon and Breach, New York. (1963)

    Google Scholar 

  16. Happel, J. and Brenner, H.: Low Reynolds Number Hydrodynamics with Spetial Applications to Particle Media, Noordhoff International Publishing, Netherland. (1973)

    Google Scholar 

  17. Faxen, H.: Die Bewegung einer starren Kugel Langs der Achse eines mit zaner Flusigkeit gefullten Rohres, Arkiv. Mat. Astron. Fys., Vol. 17. (1923)

    Google Scholar 

  18. O’Neill, M.E.: Slow Motion of Viscous Liquid Caused by a Slowly Moving Body, Mathematika, Vol. 11. (1964)

    Google Scholar 

  19. Stimson, M. and Jeffery, G.B.: The Motion of Two Spheres in a Viscous Fluid, Proc. Roy. Soc., Vol. A111. (1926)

    Google Scholar 

  20. Goldman, A.J.; Cox, R.G. and Brenner H.: Slow viscous motion of a sphere parallel to a plane wail, I. Motion through a quiscent fluid, Chem. Eng. Sci., Vol. 22. (1967)

    Google Scholar 

  21. Brenner, H.: The Slow Motion of a Sphere through a viscous fluid towards a plane surface, Chem. Eng. Sci., Vol. 16. (1961)

    Google Scholar 

  22. Wakiya, S.J.: Research Report 9, Fac. Eng. Niigata Univ., Japan. (1960)

    Google Scholar 

  23. Blake, J.R.: A Note on the Image System for a Stokeslet in a No-Slip Boundary, Proc. Cambridge Philos. Soc., Vol. 70. (1971)

    Google Scholar 

  24. Blake, J.R. and Chwang A.T.: Fundamental Singularities of Viscous Flow: The Image Systems in the Vecinity of a Stationary No-Slip Boundary, J. Eng. Math., Vol. 8. (1974)

    Google Scholar 

  25. Pozrikidis, C.; The Deformation of a Liquid Drop Moving Normal to a Plane Wall, J. Fluid Mech., Vol. 215. (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Computational Mechanics Publications

About this chapter

Cite this chapter

Power, H., Febres de Power, B. (1992). The Complete Double Layer Boundary Integral Equation Method for Particles Moving Close to Boundaries. In: Brebbia, C.A., Partridge, P.W. (eds) Boundary Elements in Fluid Dynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2876-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2876-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-780-2

  • Online ISBN: 978-94-011-2876-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics