Skip to main content

Description of Viscous-Inviscid Interaction Using Boundary Elements

  • Chapter
Boundary Elements in Fluid Dynamics
  • 252 Accesses

Abstract

Steady two- and three-dimensional flows of a viscous incompressible fluid about an arbitrary body are considered. Far from the body, the fluid can be considered as inviscid and the flow can be calculated with use of boundary element methods. In the neighborhood of the body and in its wake, the viscosity has to be taken into account, and the flow can be calculated by means of finite difference methods for example. If the Reynolds number is high, the regions, in which the viscosity is essential, that are the boundary layers at the surface, dead air regions, and free shear layers, are thin.

The interactions between these viscous and inviscid regions of the whole flow field have been treated by different methods applied to the respective regions and by different assumptions concerning the interaction effects. This will be discussed by means of three examples.

As first example, the two-dimensional flow around an airfoil is considered, in which the boundary layer separates from the airfoil and an adjacent dead air region is formed. As second example, the flow around a prolate spheroid at incidence is treated, in which case separation leads to a thin free vortex layer. A third example is given by a turbulent circular jet exhausting normally from a flat plate into a stream flowing parallel to the plate. The viscous jet is bent by the uniform inviscid flow and the inviscid flow is modified in the neighborhood of the jet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barberis, D. ‘Calcul de la couche limite tridimensionelle en modes direct ou inverse sur des obstacles quelconques’ Recherche Aérospatiale, pp. 169–195, 1986.

    Google Scholar 

  2. Batchelor, G.K. An Introduction to Fluid Dynamics Cambridge University Press, 1967.

    Google Scholar 

  3. Böddener, W. ‘Measurements of the Pressure Distribution on a Prolate Spheroid in the Neighborhood of a Plane Wall’ Private Communication, 1987.

    Google Scholar 

  4. Bradbury, L.J.S. and Wood, M.N. ‘The Static Pressure Distribution Around a Circular Jet Exhausting Normally from a Plane Wall into an Airstream’, ARC C.P. 822, 1965.

    Google Scholar 

  5. Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C. Boundary Element Techniques Springer-Verlag, Berlin and New York, 1984.

    MATH  Google Scholar 

  6. Cebeci, T., Sedlock D., Chang, K.C. and Clark, R.W. ‘Analysis of Wings with Flow Separation’ J. Aircraft, Vo1.26, pp. 214–220, 1989.

    Article  Google Scholar 

  7. Cebeci, T. and Su, W. ’separation of Three-Dimensional Laminar Boundary Layers on a Prolate Spheroid’ J. Fluid Mech., Vo1.191, pp. 47–77, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  8. Coponet, D. ‘Etude par vélocimétrie laser de la couche limite sur un ellipsoïde de révolution allongé du DFVLR’, ONERA-PV 4/7252 AN (310/S2Ch).

    Google Scholar 

  9. Geiβier, W. ‘Three-Dimensional Laminar Boundary Layer over a Body of Revolution at Incidence and with Separation’ AIAA J., Vo1.12, pp. 1743–1745, 1974.

    Article  Google Scholar 

  10. Hacket, J.E. and Miller, H.R. ‘The Aerodynamics of the Lifting Jet in a Cross Flowing Stream’, in Analysis of a Jet in a Subsonic Crosswind, NASA SP-218, pp.37–48, Symposium Langley Research Center, 1969.

    Google Scholar 

  11. Han, T. and Patel, V.C. ‘Flow Separation on a Spheroid at Incidence’ J. Fluid Mech., Vol.92, pp. 643–657, 1979.

    Article  Google Scholar 

  12. Harms. L. and Baumert, W. ’strahlinterferenz an einer Kreisscheibe’, AVA-Bericht 68 A0I, 1968.

    Google Scholar 

  13. Hinze, J.O. Turbulence, 2d Edition, McGraw-Hill, New York, 1975.

    Google Scholar 

  14. Jacob, K. ‘Berechnung der Potentialströmung um Proftle mit Absaugung und Ausblasen’ Ingenieur-Archiv, Vo1.32, pp. 51–65, 1963.

    Article  MATH  Google Scholar 

  15. Jacob, K. ‘Berechnung der abgelösten inkompressiblen Strömung um Tragflügelproftle und Bestimmung des maximalen Auftriebs’ Zeitschrift Flugwissen., Vol.17, pp.221–230, 1969.

    MATH  Google Scholar 

  16. Jacob, K. ‘Computation of the Flow Around Wings with Rear Separation’, DFVLR-FB 82-22, 1982 and J. Aircraft, Vol.21, pp. 97–98, 1984.

    Article  Google Scholar 

  17. Jacob, K. ‘Advanced Method for Computing the Flow Around Wings with Rear Separation and Ground Effect’, DFVLR-FB 86-17, 1986 and J. Aircraft, Vol. 24, pp. 126–128, 1987.

    Article  Google Scholar 

  18. Jacob, K. and Steinbach, D. ‘A Method for Prediction of Lift for Multi-Element Airfoil Systems with Separation’ in V/STOL Aerodynamics, pp. 12–1 to 12–16, AGARD Conference Proceedings No. 143, Delft, 1974.

    Google Scholar 

  19. Jaswon, M.A ‘A Review of the Theory’, Chapter 1, Topics in Boundary Element Research ed. Brebbia, C.A Vol, pp. 13–40, Springer-Verlag, Berlin and New York, 1984.

    Google Scholar 

  20. Kevorkian, J. and Cole, J.D. Perturbation Methods in Applied Mathematics Springer-Verlag, New York and Heidelberg, 1981.

    MATH  Google Scholar 

  21. Kraemer, K. ‘Flügelproftle im kritischen Reynoldszahl-Bereich’ Forschung Ingenieurwesen, Vol.27, pp. 33–46, 1961.

    Article  Google Scholar 

  22. Lamb, H. Hydrodynamics 6th Edition, Dover Publications, New York, 1932.

    MATH  Google Scholar 

  23. Martensen, E. Potentialtheorie Teubner, Stuttgart, 1968.

    Google Scholar 

  24. Martensen, E. and v. Sengbusch, K. ‘Über die Randkomponenten ebener harmonischer Vektorfelder’ Arch. Rat. Mech. Anal., Vol.5, pp. 46–75, 1960.

    Article  MATH  Google Scholar 

  25. Meier, H.U. and Kreplin, H.-P. ‘Experimental Study of Boundary Layer Velocity Proftles on a Prolate Spheroid at Low Incidence in the Cross Section x0/L = 0.64’, in Viscous and Interacting Flow Field Effects (Ed. Fiore, A.W.), pp. 169–189, Proc. 5th U.S. Air Force and F.R.G. Data Exchange Agreement Meeting, Techn. Rep. AFFDLTR-80-3088, Wright-Patterson Air Force Base, Ohio, 1980.

    Google Scholar 

  26. Oh, T.S. and Schetz, J.A ‘Finite Element Simulation of Complex Jets in a Crossflow for V/STOL Applications’ J. Aircraft, Vol.27, pp. 389–399, 1990.

    Article  Google Scholar 

  27. Panaras, AG. and Steger, J.L. ‘A Thin-Layer Solution of the Flow about a Prolate Spheroid’ Z. Flugw. Weltraum., Vol 12, pp. 173–180, 1988.

    Google Scholar 

  28. Patel, V.C. and Baek, J.H. ‘Boundary Layers and Separation on a Spheroid at Incidence’ AIAA J., Vol.23, pp. 55–63, 1985.

    Article  Google Scholar 

  29. Patel, V.C. and Choi, D.H. ‘Calculation of Three-Dimensional Laminar and Turbulent Boundary Layers on Bodies of Revolution at Incidence’, in Turbulent Shear Flows (Ed. Bradbury, L.J.S., Durst, F., Launder, B.E., Schmidt, F.W. and Whitelaw, J.H.), Vol.2, pp. 199–217, 2d Int. Symp. Turb. Shear Flows, Imp. Col., London, 1979. Springer, New York 1980

    Google Scholar 

  30. Riegels, F.W. Aerofoil Sections Butterworth, London, 1961.

    Google Scholar 

  31. Rodi, W. and Srivatsa, S.K. ‘A Locally Elliptic Calculation Procedure for ThreeDimensional Flows and its Application to a Jet in a Cross-Flow’ Comp. Meth. Appl. Mech. Eng., Vol.23, pp. 67–83, 1980.

    Google Scholar 

  32. Rotta, J.C. ‘Turbulent Boundary Layer Calculations with the Integral Dissipation Method’ in Computation of Turbulent Boundary Layers (Ed. Kline, S.J., Morkovin, M.V., Sovran, G. and Cockrell, D.J.), Vol. 1, pp. 177–181, 1968 AFOSR-IFP-Stanford Conference, Stanford, 196

    Google Scholar 

  33. Rotta, J.E. ‘Fortran IV-Rechenprogramm für Grenzschichten bei kompressiblen ebenen und achsensymmetrischen Strömungen’, Deutsche Luft-und Raumfahrt, FB 71–51, 1971.

    Google Scholar 

  34. Rotta, J.C. Turbulente Strömungen Teubner, Stuttgart, 1972.

    Google Scholar 

  35. Schlichting, H. Boundary Layer Theory 7th Edition, McGraw-Hill Book Company, New York, 1979.

    MATH  Google Scholar 

  36. Schmitt, H. ‘Deflection of a Round Turbulent Jet in a Crosswind’ Arch. Mech. Stos., Vol.26, pp. 849–859, 1974.

    MATH  Google Scholar 

  37. Schmitt, H. ‘Änderung einer Parallelströmung entlang einer ebenen Platte durch einen quer gerichteten Freistrahl’ Z. Flugwiss. Weltraum., Vol.3, pp. 283–293, 1979.

    MATH  Google Scholar 

  38. Schmitt, H. ‘Druckverteilung an einem schrag angeströmten Rotationsellipsoid’ Ingenieur-Archiv, Vol.53, pp. 337–344, 1983.

    Article  Google Scholar 

  39. Schmitt, H. ‘Potential and Thin-Layer Flow about a Prolate Spheroid’ Z. Flugwiss. Weltraum., Vol.14, pp. 117–119, 1990.

    Google Scholar 

  40. Schmitt, H. ‘High Reynolds Number Flow about a Prolate Spheroid Moving near Ground’, in Boundary Element Technology VI (Ed. Brebbia, C.A.), pp. 13–27, Computational Mechanics Publications, Southampton and Boston, 1991.

    Google Scholar 

  41. Schmitt, H. and Schneider, G.R. ‘Einfluβ des Auftriebs eines angestellten Rotationsellipsoids auf die Grenzschichtstromung in der Symmetrieebene’ ZAMM, Vol.68, pp. T353–T355, 1988.

    Google Scholar 

  42. Schmitt, H. and Schneider, G.R. ‘Calculation of the Potential Flow with Consideration of the Boundary Layer’ Chapter 6, Topics in Boundary Element Research ed. Brebbia, C.A. Vol.5, pp. 110–133, Springer-Verlag, Berlin and New York, 1989.

    Google Scholar 

  43. Steinbach, D. ‘Berechnung der Strömung mit Ablösung für Proftle und Proftlsysteme in Bodennähe oder in geschlossenen Kanälen’ Z. Flugwiss. Weltraum., Vol.2, pp.293–305, 1978.

    MATH  Google Scholar 

  44. Tanaka, I. ‘Three-Dimensional Ship Boundary Layer and Wake’ Advances in Applied Mechanics ed. Hutchinson, J.W. and Wu, T.Y., Vol. 26, pp. 311–359, Academic Press, Boston and New York, 1988.

    Google Scholar 

  45. Van Dyke, M. An Album of Fluid Motion Parabolic Press, Stanford, 1982.

    Google Scholar 

  46. Wang, K.C. ‘Boundary Layer over a Blunt Body at Low Incidence with Circumferential Reversed Flow’ J. Fluid Mech., Vol.72, pp. 49–65, 1975.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Computational Mechanics Publications

About this chapter

Cite this chapter

Schmitt, H. (1992). Description of Viscous-Inviscid Interaction Using Boundary Elements. In: Brebbia, C.A., Partridge, P.W. (eds) Boundary Elements in Fluid Dynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2876-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2876-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-780-2

  • Online ISBN: 978-94-011-2876-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics