Skip to main content
  • 226 Accesses

Abstract

There are numerous examples in the literature of herbicides whose species selectivity has been primarily attributed to differential metabolism. In addition, resistant weed biotypes (e.g. chlotoluron-resistant blackgrass (Alopecurus myosuroides) have emerged for which elevated metabolism appears to form the basis for the acquired resistance. Clearly, metabolism can play a key role in the response of a plant to the particular herbicide and, consequently, an ability to manipulate herbicide detoxification in weed species offers a potential opportunity for synergy. This may lead to a broadening of spectrum to include previously difficult to control species as well as synergistic mixtures for eradication of resistant biotypes. The present paper briefly outlines the key herbicide detoxification reactions responsible for species selectivities, with emphasis on oxidative reactions and glutathione conjugation and reference to the underlining biochemistry. Published literature on the modification of these degradative mechanisms by such mixed function oxidase inhibitors as 1-aminobenzotriazole (ABT), piperonyl butoxide, tetcyclacis and paclobutrazol (plant growth regulators), a number of azole fungicides and the herbicide tridiphane is reviewed. The effect of tridiphane on glutathione S-transferase mediated detoxification will also be discussed. Some comparisons between in vivo and in vitro results are made. Finally, some of the problems associated with the possible implementation and further exploitation of this approach to synergy are discussed, not least of which would be the need for selective synergists to avoid loss of crop selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colby, S.R., Calculating synergistic and antagonistic responses of herbicide combinations. Weeds, 1967, 15, 20–2.

    Article  CAS  Google Scholar 

  2. Akubundu, I.O., Sweet, R.D. and Duke, W.B., A method of evaluating herbicide combinations and determining herbicide synergism. Weed Sci., 1975, 23, 20–5.

    Google Scholar 

  3. Kemp, M.S. and Caseley, J.C., Synergists to combat herbicide resistance. In Herbicide resistance in Weeds and Crops. eds. J.C. Caseley, G.W. Cussans and R.K. Atkin, Butterworth-Heinemann Ltd., Oxford, 1991, pp. 279–92.

    Google Scholar 

  4. Gressel, J., Synergising herbicides. Rev.Weed Sci., 1990, 5, 49–82.

    CAS  Google Scholar 

  5. Cole, D.J, Edwards, R. and Owert, W.J., The role of metabolism in herbicide selectivity. In Progress in Pesticide Biochemistry and Toxicology. vol.6, eds. D. Hutson and T.R. Roberts, Wiley Interscience, Chichester, 1987, pp. 57–104.

    Google Scholar 

  6. Hatzios, K.K. and Penner, D., Metabolism of Herbicides in Higher Plants. Burgess, Minneapolis, 1981.

    Google Scholar 

  7. Brown, H.M., Fuesler, T.P., Ray, T.B. and Strachan, S.D., Role of Plant Metabolism in Crop Selectivity of Herbicides. In Pesticide Chemistry: Advances in International Research. Development. and Legislation. ed. H. Frehse, VCH Verlagsgesellschaft mbH, Weinheim, 1991, pp. 257–66.

    Google Scholar 

  8. Owen, W.J., Herbicide metabolism as a basis for selectivity. In Target Sites for Herbicide Action. ed. R.C. Kirkwood, Plenum Publishing Corp., New York, 1991, pp.285–314

    Google Scholar 

  9. Cole, D.J. Oxidation of Xenobiotics in Plants. In Progress in Pesticide Biochemistry and Toxicology. vol.3, eds. D.H. Hutson and T.R. Roberts, Wiley Interscience, Chichester, pp. 199–254.

    Google Scholar 

  10. Lamoureux, G.L. and Frear, D.S., Pesticide metabolism in higher plants: in vitro enzyme studies. In Xenobiotic metabolism-in vitro methods. Am. Chem. Soc. Symp. Series, vol.97, eds. G.D. Paulson, D.S. Frear and E.P. Marks, Am. Chem. Soc., Washington D.C., pp. 72–128.

    Google Scholar 

  11. Benveniste, I., Gabriac, B. and Durst, E, Purification and characterisation of NADPH cytochrome P450 reductase from higher plant microsomes. Biochem. J.. 1986, 235, 365–73.

    PubMed  CAS  Google Scholar 

  12. Jollie, D.R., Sligar, S.G. and Schuler, W., Purification and characterisation of microsomal cytochrome b5 reductase from Pisum sativum. Plant Physiol.. 1987, 85, 457–62.

    Article  PubMed  CAS  Google Scholar 

  13. Potts, J.R.M., Weklych, R. and Conn, E.E., The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P450. J. Biol. Chem.. 1974, 249, 5019–26.

    PubMed  CAS  Google Scholar 

  14. Madhyastha, K.M. and Coscia, C.J., Detergent solubilisation of NADPH cytochrome c(P450) reductase from the higher plant Catharanthus roseus. J. Biol. Chem.. 1979, 254, 2419–27.

    Google Scholar 

  15. Hanson, E.P. and West, C.A., Properties of the system for mixed function oxidation of kaurene and kaurene derivatives in the microsomes of the immature seed of Marah macrocarpus. Plant Physiol., 1976, 58, 429–34.

    Google Scholar 

  16. Soliday, C.L. and Kolattukudy, P.E., Midchain hydroxylation of 16-hydroxypalmitic acid by the endoplasmic reticulum fraction from germinating Vida faba. Arch. Biochem. Biophys.. 1978, 188, 338–47.

    Article  PubMed  CAS  Google Scholar 

  17. Sugaranam, B., Diastereoisomers and enantiomers of paclobutrazol: their preparation and biological activity. Pestic. Sci., 1984, 15, 296–302.

    Article  Google Scholar 

  18. Burden, R.S., Carter, G.A., Clark, T., Cook, D.T., Croker, S.J., Deas, A.H.B., Hedden, P., James, C.S. and Lenton, J.R., Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis. Pestic. Sci.. 1987, 21, 253–67.

    Article  CAS  Google Scholar 

  19. Kato, T., Sterol biosynthesis in fungi, a target for broad spectrum fungicides. In Chemistry of Plant Protection. eds. G. Haug and H. Hoffman, Springer, Berlin, 1986, pp. 1–24.

    Google Scholar 

  20. Vanden Bossche, H., Marichal, P., Gorrens, J., Bellens, D., Verhooven, H., Coene, M.L., Lauwers, W. and Janssen, P.A.J., Interaction of azole derivatives with cytochrome P450 isozymes in yeast, fungi, plants and mammalian cells. Pestic. Sci.. 1987, 21, 289–306.

    Article  CAS  Google Scholar 

  21. Taton, M., Ullmann, P., Benveniste, P. and Rahier, A., Interaction of triazole fungicides and plant growth regulators with microsomal cytochrome P450-dependent obtusifoliol 14 α-methyl demethylase. Pestic. Biochem. Physiol.. 1988, 30, 178–89.

    Article  CAS  Google Scholar 

  22. Streit, L., Moreau, M., Gaudin, J., Ebert, E. and Vanden Bossche, H., A novel imidazole carboxylic acid ester is a herbicide inhibiting 14 α-methyl demethylation in plant sterol biosynthesis. Pestic. Biochem. Physiol.. 1991, 40, 162–8.

    Article  CAS  Google Scholar 

  23. Ortiz de Montellano, P.R. and Mathews, J.M., Autocatalytic alkylation of the cytochrome P450 prosthetic haem group by 1-aminobenzotriazole. Biochem. J.. 1981, 195, 761–4.

    PubMed  CAS  Google Scholar 

  24. Ryan, P.J., Gross, D., Owen, W.J. and Laanio, T.L., The metabolism of chlortoluron, diuron and CGA 43057 in tolerant and susceptible plants. Pestic. Biochem. Physiol.. 1981, 16, 213–21.

    Article  CAS  Google Scholar 

  25. Cabanne, F., Huby, D., Gaillardon, P., Scalla, R. and Durst, F., Effect of the cytochrome P450 inactivator 1-aminobenzotriazole on the metabolism of chlortoluron and isoproturon in wheat. Pestic. Biochem. Physiol.. 1987, 28, 371–80.

    Article  CAS  Google Scholar 

  26. Canivenc, M-C., Cagnac, B., Cabanne, F. and Scalla, R., Induced changes of chlortoluron metabolism in wheat cell suspension cultures. Plant Physiol. Biochem.. 1989, 27, 193–201.

    CAS  Google Scholar 

  27. Cole, D.J. and Owen, W.J., Influence of monoxygenase inhibitors on the metabolism of the herbicides chlortoluron and metolachlor in cell suspension cultures. Plant Science. 1987, 50, 13–20.

    Article  CAS  Google Scholar 

  28. Sterling, T.M. and Balke, N.E., Bentazon uptake and metabolism by cultured plant cells in the presence of monoxygenase inhibitors and cinnamic acid. Pestic. Biochem. Physiol.. 1990, 38, 66–75.

    Article  CAS  Google Scholar 

  29. Leah, J.M., Worrall, T.C. and Cobb, A.H., A study of Bentazon uptake and metabolism in the presence and absence of cytochrome P450 and acetyl-coenzyme A carboxylase inhibitors. Pestic. Biochem. Physiol.. 1991, 39, 232–9.

    Article  CAS  Google Scholar 

  30. Fritsch, H., Rademacher, W. and Retzlaff, G., Inhibition of plant growth, gibberellin biosynthesis and cinnamate-4-monoxygenase by selected growth regulators. Proc Int. Bot. Congr.. Berlin, 1987, Abstr. p. 2-113b.

    Google Scholar 

  31. Gonneau, M., Pasquette, B., Cabanne, F. and Scalla, R., Metabolism of chlortoluron in tolerant species: Possible role of cytochrome P450 monoxygenases. Weed Res.. 1988, 28, 19–25.

    Article  CAS  Google Scholar 

  32. Reichhart, D., Simon, A., Durst, F., Mathews, J.M. and Ortiz de Montellano, P.R., Autocatalytic inactivation of plant cytochrome P450 enzymes: selective inactivation of cinnamic acid 4-hydroxylase from Helianthus tuberosus by 1-aminobenzotriazole. Arch. Biochem. Biophys., 1982, 216, 522–9.

    Article  PubMed  CAS  Google Scholar 

  33. Fonne, R., Intervention du cytochrome P450 des vegetaux superieurs dans l’oxydation de composes exogenes: l’aminopyrine et Ie chlortoluron. These de Doctorat, Universite Louis Pasteur, Strasbourg, 1985.

    Google Scholar 

  34. Blee, E. and Durst, F., Hydroperoxide-dependent sulfoxidation catalysed by soybean microsomes. Arch. Biochem.. 1987, 254, 43–52.

    Article  PubMed  CAS  Google Scholar 

  35. Powles, S.B. and Liljegren, D., A grass weed (Lolium rigidum) biotype displaying cross-resistance to herbicides with different modes of action: first studies on the mechanism of cross-resistance. Weed Sci. Soc. Am. Abstr. 1988, p.187.

    Google Scholar 

  36. Moss, S.R., Herbicide resistance in blackgrass (Alopecurus myosuroides). Proc. of the British Crop Protection Conference-Weeds. 1987, 3, 879–86.

    Google Scholar 

  37. McFadden, J.J., Frear, D.S. and Mansager, E.R., Aryl hydroxylation of Diclofop by a cytochrome P450 dependent monoxygenase from wheat. Pestic. Biochem. Physiol.. 1989, 34, 92–100.

    Article  CAS  Google Scholar 

  38. Shimabukuro, R.H. and Hoffer, B. L., Metabolism of Diclofop-methyl in susceptible and resistant biotypes of Lolium rigidum. Pestic. Biochem. Physiol.. 1991, 39, 251–60.

    Article  CAS  Google Scholar 

  39. Moreland, D.E., Novitzky, W.P. and Levi, P.L., Selective inhibition of cytochrome P450 isozymes by the herbicide synergist tridiphane. Pestic. Biochem. Physiol., 1989, 35, 42–9.

    Article  CAS  Google Scholar 

  40. Kemp, M.S., Newton, L.V. and Caseley, J.C., Synergistic effects of some P450 oxidase inhibitors on the phytotoxicity of chlortoluron in a resistant population of blackgrass (Alopecurus myosuroides). In Factors affecting Herbicidal activity and Selectivity-Proc. of the Eur. Weed Res. Soc. Symp.. Wageningen, 1988, pp. 121–6.

    Google Scholar 

  41. Liebman, K.C. and Ortiz, E., Metapyrone and modifiers of microsomal drug metabolism. Drug Metab. Dispos.. 1973, 1, 184–9.

    Google Scholar 

  42. Frear, D.S., Microsomal N-demethylation by a cotton leaf oxidase system of 3-(4-chlorophenyl) 1,1-dimethylurea (monuron). Science, 1968, 162, 674–5.

    Article  PubMed  CAS  Google Scholar 

  43. Makeev, A.M., Makoveichuk, A.Yu. and Chkanikov, D.I., Microsomal hydroxylation of 2,4-D in plants. Dokl. Bot. Sci., 1977, 223, 36–8.

    Google Scholar 

  44. Fonne-Pfister, R. and Kreutz, K., Ring-methyl hydroxylation of chlortoluron by an inducible cytochrome P450-dependent enzyme from maize. Phytochemistry. 1990, 29, 2793–6.

    Article  CAS  Google Scholar 

  45. Fonne-Pfister, R., Gaudin, J., Kreuz, K., Ramsteiner, K. and Ebert, E., Hydroxylation of Primisulfuron by an inducible cytochrome P450-dependent monoxygenase system from maize. Pestic. Biochem. Physiol.. 1990, 37, 165–73.

    Article  CAS  Google Scholar 

  46. Moreland, D.E., Corbin, F.T., Burton, J.D. and Maness, E.P., Metabolism of Bentazon by excised tissue and a microsomal preparation from grain sorghum seedlings. 7th Int. Congress of Pestic. Chem. Abstr., Int. Union of Pure and Applied Chemistry, Hamburg, 1990, vol. 2, p. 221.

    Google Scholar 

  47. Mougin, C., Cabanne, F., Canivenc, M-C. and Scalia, R., Hydroxylation and Ndemethylation of chlortoluron by wheat microsomal enzymes. Plant Sci., 1990, 66, 195–203.

    Article  CAS  Google Scholar 

  48. Zimmerlin, A. and Durst, E, Xenobiotic metabolism in plants: aryl hydroxylation of diclofop by a cytochrome P450 enzyme from wheat. Phytochemistry, 1990, 29, 1729–32.

    Article  CAS  Google Scholar 

  49. Jones, O.T.O. and Caseley, J.C., Role of cytochrome P450 in herbicide metabolism. Proc. of the Brighton Crop Protection Conference-Weeds, 1989, vol.3, pp.1175–84.

    Google Scholar 

  50. Frear, D.S., Swanson, H.R. and Thalacker, E.W., Induced microsomal oxidation of Diclofop, Triasulfuron, Chlosulfuron and Linuron in wheat. Pestic. Biochem. Physiol., 1991, 41, 274–87.

    Article  CAS  Google Scholar 

  51. Mougin, C., Polge, N., Scalia, R. and Cabanne, F., Interactions of various agrochemicals with cytochrome P450-dependent monoxygenases of wheat cells. Pestic. Biochem. Physiol., 1991, 40, 1–11.

    Article  CAS  Google Scholar 

  52. McFadden, J.J., Oronwald, J.W. and Eberlein, C.V., In vitro hydroxylation of Bentazon by micro somes from naphthalic anhydride-treated corn shoots. Biochem. Biophys. Res. Commun., 1990, 168, 206–13.

    Article  PubMed  CAS  Google Scholar 

  53. McCall, P.J, Stafford, L.E., Zorner, P.S. and Oavit, P.D., Modeling the foliar behaviour of atrazine with and without crop oil concentrate on giant foxtail and the effect of tridiphane on the model rate constants. J. Agric. Food Chem., 1986, 34, 235–8.

    Article  CAS  Google Scholar 

  54. Lamoureux, G.L. and Rusness, D.G., Tridiphane [2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)oxirane] an Atrazine synergist: Enzymatic conversion to a potent glutathione S-transferase inhibitor. Pestic. Biochem. Physiol., 1986, 26, 323–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 SCI

About this chapter

Cite this chapter

Owen, W.J. (1992). Potential for Synergising Herbicides through Modification of Metabolism. In: Denholm, I., Devonshire, A.L., Hollomon, D.W. (eds) Resistance ’91: Achievements and Developments in Combating Pesticide Resistance. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2862-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2862-9_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-886-1

  • Online ISBN: 978-94-011-2862-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics