Skip to main content

Mechanisms of Resistance to Fungicides

  • Chapter
  • 234 Accesses

Abstract

Fungicide resistance is a problem which followed the development of antifungals with specific biochemical modes of action. It is not surprising that the primary mechanism of resistance to these new specific fungicides is target site based. The most characterized example of fungicide resistance based on a modified target is resistance to the benzimidazole class of fungicides such as carbendazim. Several laboratory studies have clearly shown by genetic and biochemical analysis that modified tubulin is the mechanism of benzimidazole resistance. Resistance mechanisms to compounds such as the phenylamides, carboxamides, polyoxins, and sterol biosynthesis inhibitors have been investigated and will be discussed to exemplify the diversity of mechanisms used by fungi to circumvent the toxicity of modern disease control agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delp, C.J., Benzimidazole and related fungicides. In Modern Selective Fungicides. ed. H. Lyr. VEB Gustav Fischer Verlag, Jena and Logman Group UK Ltd., London, 1987, pp 233–244.

    Google Scholar 

  2. Delp, D.J., and Klopping, H. L., Performance attributes of a new fungicide and ovicide candidate. Plant Dis. Rep.. 1968, 52, 95–99.

    Google Scholar 

  3. Clemons, G. P., and Sisler, H. D., Localization of the site of action of a fungitoxic benomyl derivative. Pestic. Biochem. Physiol.. 1971, 1, 32–42.

    Article  CAS  Google Scholar 

  4. Davidse, L. C., Antimitotic activity of methyl benzimidazole-2-yl carbamate (MBC) in Aspergillus nidulans. Pestic. Biochem. Physiol., 1976, 3, 317–325.

    Article  Google Scholar 

  5. Hammerschlag, R. S. and Sisler, H. D., Benomyl and methyl-2-benzimidazole carbamate (MBC): Biochemical, cytological and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cerevisiae. Pestic. Biochem. Physiol., 1973, 3, 42–54.

    Article  CAS  Google Scholar 

  6. Jung, M. K., Dunne, OP.W., Suen, I.H., and Oakley, B. R., Sequence alterations in ß-tubulin mutations of A. nidulans. J. Cell Biol., 1987, 105, (Abstract 1560).

    Google Scholar 

  7. Orbach, M.J., Porro, E. B., and Yanofsky, C., Cloning and characterization of the gene for ß-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol. Cell. Biol., 1986, 6, 2452–2461.

    PubMed  CAS  Google Scholar 

  8. Thomas, J. H., Neff, N. F., and Botstein, D., Isolation and characterization of mutantions in the ß-tubulin gene of Saccharomyces cerevisiae. Genetics, 1985, 111, 715–734.

    PubMed  CAS  Google Scholar 

  9. Davidse, L. c., Benzimidazole fungicides: Mechanism of action and biological impact. Ann. Rev. Phytopathol., 1986, 24, 43–65.

    Article  CAS  Google Scholar 

  10. Leroux, P. and Gredt M., Phenomena of negative cross-resistance in Botrytis cinerea Perg. between benzimidazole fungicides and carbamate herbicides. Phytiatrie-Phytopharmacie, 1979, 28, 79–86.

    CAS  Google Scholar 

  11. Kato, T., Suzuki, K., Takahashi, J., and Kamoshita, K., Negatively correlated crossresistance between benzimidazole fungicides and methyl N-(3,5-dichlorophenyl) carbamate. J. Pesticide. Sci., 1984, 9, 489–495.

    CAS  Google Scholar 

  12. Demakopoulou, M. G., and Georgopolous, S. G., Sensitivity to Nphenylcarbamates as related to benzimidazole resistance in Cercospora beticola. Proceeding of the 6th IUPAC Congress of Plant Protection., 1987, 3E-05

    Google Scholar 

  13. Leroux, P., and Cavalier N., Characteristics of Pseudocercosporella herpotrichoides strains resistant to benzimidazole and thiophanate fungicides. La Defense de Vegetaux, 1983, 222, 231–238.

    Google Scholar 

  14. Schwinn, F. J,. and Staub, T., Phenylamides and other fungicides against Oomyctes. In Modern Selective Fungicides. ed. H. Lyr. VEB Gustav Fischer Verlag, Jena and Logman Group UK Ltd., London, 1987, pp 259–273.

    Google Scholar 

  15. Kerkenaar, A., On the antifungal mode of action of metalaxyl, an inhibitor of nucleic acid synthesis in Pythium splendens. Pestic. Biochem. Physol., 1981, 16, 1–13.

    Article  CAS  Google Scholar 

  16. Davidse, L.C., Hofman, A. E., and Velthuis, G.C.M., Specific interference of metalaxyl with endogenous RNA polymerase activity in isolated nuclei from Phytophthora megasperma f. sp. medicaginis. Exp. Mycol. 1983, 7, 344–361.

    Article  CAS  Google Scholar 

  17. Davidse, L. C., Phenylamide fungicides: Mechanism of action and resistance. In Fungicide Resistance in North America. ed. C. Delp, APS Press, St. Paul, 1988, pp. 63–65.

    Google Scholar 

  18. von Schmeling, B., and Kulka, M., Systemic fungicidal activity of 1,4-oxathiin derivatives. Science. 1966, 152, 659–660.

    Article  CAS  Google Scholar 

  19. White, G. A., Thorn G. D., and Georgopolous, S. G., Oxathiin carboxamides highly active against carboxin-resistant succinic dehydrogenase complexes from carboxinselected mutants of Ustilago maydis and Aspergillus nidulans. Pestic. Biochem. and Physiol., 1978, 9, 165–182.

    Article  CAS  Google Scholar 

  20. Schewe, T., and Lyr, H., Mechanism of action of carboxin fungicides and related compounds. In Modem Selective Fungicides. ed. H. Lyr. VEB Gustav Fischer Verlag, Jena and Logman Group UK Ltd., London, 1987, pp 133–142.

    Google Scholar 

  21. Kulka, M., and von Schmeling, B., Carboxin fungicides and related compounds. In Modern Selective Fungicides. ed. H. Lyr. VEB Gustav Fischer Verlag, Jena and Logman Group UK Ltd., London, 1987, pp 119–131.

    Google Scholar 

  22. Locke, T., Current incidence in the United Kingdom of fungicide resistance in pathogens of cereals. Proc of the British Crop Prot. Conf., 1986. 2, 781–786.

    Google Scholar 

  23. Hori, M., Kakiki, K., and Misato, T., Further study on the relation of polyoxin structure to chitin synthetase inhibition. Agr Biol. Chem., 1974, 38, 691–698.

    CAS  Google Scholar 

  24. Hori, M., Kakiki, K., Eguchi, J., and Misato, T., Studies on the mode of action of polyoxins. VI effect of polyoxin B on chitin synthesis in polyoxin-sensitive and resistant strains of Alternaria kikuchiana. J. Antibiot.. 1974, 27, 260–266.

    PubMed  CAS  Google Scholar 

  25. Hori, M., Kakiki, K., and Misato, T., Antagonistic effect of dipeptides on the uptake of polyoxin A by Alternaria kikuchinana. J. Pesticide Sci.. 1977, 2, 139–149.

    CAS  Google Scholar 

  26. Akatsuka, T., Kodama, O., and Yamada, H., A novel mode of action of Kitazin P in Pyricularia oryzae. Agric. Biol Chem., 1977, 41, 2111–2112.

    CAS  Google Scholar 

  27. Uesugi, Y. and Katagiri, M., Metabolism of a phosphorothiolate fungicide IBP by strains of Pyricularia oryzae with varied sensitivity. In Pesticide Chemistry. Human Welfare and the Environment. Vol. 3. Mode of Action. Metabolism and Toxicology. ed. J. Miyamoto and P.C. Kearney, Pergammon Press, New York, 1983, pp. 165–170.

    Google Scholar 

  28. de Waard, M. A. and Van Nistelrooy, J. G. M., Mechanism of resistance to pyrazophos in Pyricularia oryzae. Neth. J. Pl. Path., 1980, 86, 251–258.

    Article  CAS  Google Scholar 

  29. de Waard, M. A., Mechanisms of action of the organophosphorus fungicide pyrazophos. Meded. LandbHogesch. Wageningen, 1974, 74(14), 1–98.

    Google Scholar 

  30. Brent, K. J. and Hollmon D. W., Risk of resistance against sterol biosynthesis inhibitiors in plant protection. In Sterol biosynthesis inhibitors: Pharmaceutical and agrochemical aspects. ed. D. Berg and M. Plempel., Ellis Horwood, Chichester, West Sussex, 1989, pp. 332–346.

    Google Scholar 

  31. Sisler, H. and Ragsdale, N. N., Biochemical and cellular aspects of the antifungal action of ergosterol biosynthesis inhibitors. In Mode of Action of Antifungal Agents. ed. A. P. J. Trinici and J. F. Ryley, Cambridge University Press, Cambridge, 1984, pp. 257–282.

    Google Scholar 

  32. Kerkenaar, A. Mechanism of action of morpholine fungicides. In Modem Selective Fungicides. ed. H. Lyr. VEB Gustav Fischer Verlag, Jena and Logman Group UK Ltd., London, 1987, pp. 159–171.

    Google Scholar 

  33. Scheinpfiug, H. and Kuck, K. W., Sterol biosynthesis inhibiting piperazine, pyridine, pyrimidine and azole fungicides. In Modem Selective Fungicides. ed. H. Lyr. VEB Gustav Fischer Verlag, Jena and Logman Group UK Ltd., London, 1987, pp. 173–204.

    Google Scholar 

  34. de Waard, M. A., Kipp, E. M. C., Horn, N. M., and van Nistelrooy, J. G. M., Variation in sensitivity to fungicides which inhibit ergosterol biosynthesis in wheat powdery mildew. Neth. J. Plant Pathol., 1986, 92, 21–32.

    Article  CAS  Google Scholar 

  35. de Waard, M. A. and van Nistelrooy, J. G. M., An energy-dependent efflux mechanism for fenarimol in a wild-type strain and fenarimol-resistant mutants of Aspergillus nidulans. Pestic. Biochem. Physiol., 1980, 13, 255–266.

    Article  CAS  Google Scholar 

  36. de Waard, M. A. and van Nistelrooy, J. G. M., Accumulation of SBI fungicides in a wild-type and fenarimol-resistant isolates of Penicillium italicum. Pestic. Sci., 1988, 22, 371–382.

    Article  CAS  Google Scholar 

  37. Kalb, V. F., Loper, J. C., Dey, C. R., Woods, C.W., and Sutter, T. R., Isolation of a cytochrome P-450 structural gene from Saccharomyces cerevisiae. Gene, 1986, 45, 237–242.

    Article  PubMed  CAS  Google Scholar 

  38. Henry, M. J. and Trivellas, A. E., Laboratory-induced fungicide resistance to benzimidazole and azole fungicides in Cercospora beticola. Pestic. Biochem. Physiol., 1989, 35, 89–96.

    Article  CAS  Google Scholar 

  39. Baloch, R. I., Mercer. E. I., Wiggins, T. E., and Baldwin, B. C., Where do morpholines inhibit sterol biosynthesis? Proc. Brit. Crop Prot. Conf.. 1984, 3, 893–898.

    Google Scholar 

  40. Schneegurt, M. and Henry, M. J., A comparison of the effects of fenpropidin and piperalin on sterol biosynthesis in Ustilago maydis. Pestic Biochem. Physiol.. 1991, (submitted)

    Google Scholar 

  41. Ryder, N. S., Frank, I., and Dupont, M. c., Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob. Agent. and Chemother.. 1986, 29, 858–861.

    CAS  Google Scholar 

  42. Ryder, N. S., Specific inhibition of fungal sterol biosynthesis by SF 86-327, a new allylamine antimycotic agent. Antimicrob. Agent. and Chemother.. 1985, 27, 252–259.

    CAS  Google Scholar 

  43. Orth, A. B., Henry, M. J. and Sisler, H. D., Mechanism of resistance to terbinafine in two isolates of Ustilago maydis. Pestic. Biochem. Physiol., 1990, 37, 182–191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 SCI

About this chapter

Cite this chapter

Henry, M.J. (1992). Mechanisms of Resistance to Fungicides. In: Denholm, I., Devonshire, A.L., Hollomon, D.W. (eds) Resistance ’91: Achievements and Developments in Combating Pesticide Resistance. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2862-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2862-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-886-1

  • Online ISBN: 978-94-011-2862-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics