Skip to main content

Golden Generalities and Co-opted Anomalies: Haldane vs. Muller and the Drosophila Group on the Theory and Practice of Linkage Mapping

  • Chapter

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 142))

Abstract

Thus the authors of the Mechanisms of Mendelian Heredity — the second edition of their textbook manifesto — concluded their discussions of Haldane’s views on a theory of linkage. By 1922, Drosophila genetics had center stage in theoretical investigations of the nature of the gene and their organization into chromosomes, whose mechanics gave what was soon to be known as “classical” genetics a theoretical centrality and predictive power rivalling that of classical mechanics in its own domain two centuries before. It appeared to be a picture of great generality. The key to this theoretical revolution in genetics was the discovery, analysis, explanation, and exploitation of linkage, and the linkage map was, properly, an exemplar of high theoretical science at its best. As authors of such a theoretical achievement, Morgan, Sturtevant, Bridges, and Muller — so a naive view goes — should have been both prepared and inclined to appreciate further theoretical developments of their model.

Such an attempt to find a general formula is futile, for it has been proved that the relation between map-distance and observed percentage of crossing over is different not only in different chromosomes, but even very strikingly in different regions of the same chromosome. The only satisfactory representation of such relationships is one that gives for each chromosome, and for each region of that chromosome the observed relation between map-distance and crossover values. From such careful, detailed region-by-region studies, a more general statement and formulation should emerge. Until such studies are completed, there is nothing to be gained from a priori attempts to formulate the relationship. … it is evident from the foregoing that within a given region the exact function of distance represented by crossover values depends directly upon the magnitude of the interference acting at each given distance. … (MMH, 1922, p. 171.)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, G. (1979), Thomas Hunt Morgan: The Man and His Science, Princeton: Princeton University Press.

    Google Scholar 

  • Bateson, W. and R. C. Punnett (1911), ‘On Gametic Series Involving Reduplication of Certain Terms’, Journal of Genetics 1: 293-302.

    Article  Google Scholar 

  • Bechtel, W. and R. C. Richardson (1992), Discovering Complexity: Decomposition and Localization as Scientific Research Strategies, Princeton: Princeton University Press.

    Google Scholar 

  • Boveri, T. (1902), ‘On Multipolar Mitosis as a Means of Analysis of the Cell Nucleus’, English translation of ‘Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns’, Verhandlungen der physikalisch-medizinischen Gesellschaft zu Würzburg 35: 67-90, reprinted in B. H. Willier and J. M. Oppenheim, Foundations of Experimental Embryology, 2nd ed., New York: MacMillan, 1974, pp. 74-97.

    Google Scholar 

  • Boveri, T. (1907), ‘Die Entwicklung dispermer Seeigel-Eier. Ein Beitrag zur Befruchtungslehre und zur Theorie des Kerns’, Zellen-Studien, Heft 6, Jena: Verlag von Gustav Fischer, pp. 1–292.

    Google Scholar 

  • Bridges, C. B. (1915), ‘A Linkage Variation in Drosophila’, Journal of Experimental Zoölogy 19, # 1 (July): 1–21.

    Article  Google Scholar 

  • Bridges, C. B. (1935), ‘Salivary Chromosome Maps - with a Key to the Banding of the Chromosomes of Drosophila melanogaster’, Journal of Heredity 26: 60-64.

    Google Scholar 

  • Bridges, C. B. and T. H. Morgan (1919), The Second Chromosome Group of Mutant Characters, Carnegie Institute of Washington, Publication No. 278, Part II, pp. 123-304.

    Google Scholar 

  • Bridges, C. B. and T. H. Morgan (1923), The Third Chromosome Group of Mutant Characters in Drosophila melanogaster, Carnegie Institute of Washington, Publication No. 327.

    Google Scholar 

  • Burian, R. (1991), ‘Underappreciated Pathways to Molecular Genetics, or How to Accomplish a Synthesis in Biology’, talk at Chicago, February, 1991, and forthcoming as a paper in a symposium on molecular biology edited by S. Sarkar, thru Boston Studies in the Philosophy of Science.

    Google Scholar 

  • Carlson, E. A. (1967), The Gene: A Critical History, Philadelphia: W. B. Saunders, reprinted by the University of Iowa Press.

    Google Scholar 

  • Carlson, E. A. (1981), Genes, Radiation and Society: The Life and Work of H J. Muller, Ithaca: Cornell University Press.

    Google Scholar 

  • Cartwright, N. (1983), How the Laws of Physics Lie, London: Oxford University Press.

    Book  Google Scholar 

  • Castle, W. E. (1919a), ‘Is the Arrangement of the Genes in the Chromosome Linear?’, Proceedings of the National Academy of Science 5: 25-32.

    Article  Google Scholar 

  • Castle, W. E. (1919b), ‘Are Genes Linear or Non-Linear in Arrangement?’, Proceedings of the National Academy of Science 5: 500-506.

    Google Scholar 

  • Coleman, W. S. (1970), ‘Bateson and Chromosomes: Conservative Thought in Science’, Centaurus 15: 228-314.

    Article  Google Scholar 

  • Crow, J. F. (1987), ‘Muller, Dobzhansky, and Overdominance’, Journal of the History of Biology 20, # 3(Fall): 351-380.

    Article  Google Scholar 

  • Darden, L. (1991), Theory Change In Science: Strategies from Mendelian Genetics, New York: Oxford University Press.

    Google Scholar 

  • Felsenstein, J. (1979), ‘A Mathematically Tractable Family of Genetic Mapping Functions with Different Amounts of Interference’, Genetics 91: 769-775.

    Google Scholar 

  • Fisher, R. A. (1949), The Design of Experiments, 3rd ed., London: Oliver and Boyd.

    Google Scholar 

  • Gowen, John, W. (1919), ‘A Biometrical Study of Crossing Over: On the Mechanism of Crossing Over in the Third Chromosome of Drosophila melanogaster’, Genetics 4: 205-249.

    Google Scholar 

  • Hacking, Ian (1983), Representing and Intervening, London: Cambridge.

    Google Scholar 

  • Haldane, J. B. S. (1919a), ‘The Probable Errors of Calculated Linkage Values, and the Most Accurate Method of Determining Gametic from Certain Zygotic Series’, Journal of Genetics 8: 291-298.

    Article  Google Scholar 

  • Haldane, J. B. S. (1919b), ‘The Combination of Linkage Values, and the Calculation of Distance between the Loci of Linked Factors’, Journal of Genetics 8: 299-309.

    Article  Google Scholar 

  • Haldane, J. B. S. (1920), ‘Note on a Case of Linkage in Paratettix’, Journal of Genetics 10:47-51.

    Article  Google Scholar 

  • Haldane, J. B. S. (1927), ‘On Being the Right Size’, in his Possible Worlds and Other Essays, London: Chatto and Windus; also reprinted in E. Nagel and Newman, eds., The World of Mathematics, New York: Simon and Schuster, 1954.

    Google Scholar 

  • Haldane, J. B. S. (1931), ‘The Cytological Basis of Genetical Interference’, Cytologia 3: 54-65.

    Article  Google Scholar 

  • Janssens, F. A. (1909), ‘Spermatogenese dans les Batraciens. V. La Theorie de la chiasmatypie. Nouvelles interpretation les cineses de maturation’, La Cellule 25: 387-411.

    Google Scholar 

  • Jennings, H. S. (1923), ‘The Numerical Relations in the Crossing Over of the Genes, with a Critical Examination of the Theory that the Genes Are Arranged in a Linear Series’, Genetics 8: 393-457.

    Google Scholar 

  • Kincaid, H. (1990) ‘Molecular Biology and the Unity of Science’, Philosophy of Science 57: 575-593.

    Article  Google Scholar 

  • Kitcher, P. (1984), ‘1953 and All That. A Tale of Two Sciences’, The Philosophical Review 93: 335-73.

    Article  Google Scholar 

  • Kosambi, D. D. (1944), ‘The Estimation of Map Distances from Recombination Values’, Annals of Eugenics 12: 172-176.

    Google Scholar 

  • Lederman, M. (1989), ‘Genes on Chromosomes: The Conversion of Thomas Hunt Morgan’, Journal of the History of Biology 22(1): 163-176.

    Article  Google Scholar 

  • Moore, John A. (1972), Heredity and Development, 2nd ed., Oxford: Oxford University Press.

    Google Scholar 

  • Morgan, T. H. (1909), ‘What Are “Factors” in Mendelian Explanations?’, Proceedings of the American Breeder’s Association 5: 365-368.

    Google Scholar 

  • Morgan, T. H. (1910a), ‘Chromosomes and Heredity’, American Naturalist 44: 449- 496.

    Article  Google Scholar 

  • Morgan, T. H. (1910b), ‘Sex-limited Inheritance in Drosophila’, Science 32:120-122.

    Article  Google Scholar 

  • Morgan, T. H. (1911a), ‘Random Segregation versus Coupling in Mendelian Inheritance’, Science 34: 384.

    Article  Google Scholar 

  • Morgan, T. H. (1911b), ‘Chromosomes and Associative Inheritance’, Science 34: 636- 638.

    Article  Google Scholar 

  • Morgan, T. H. (1919a), The Physical Basis of Heredity, Philadelphia: J. B. Lipincott.

    Book  Google Scholar 

  • Morgan, T. H. (1919b), ‘A Demonstration of Genes Modifying the Character “Notch” ’, Carnegie Institute of Washington Publication # 278, Part IV, pp. 343-388.

    Google Scholar 

  • Morgan, T. H. and C. B. Bridges (1916), ‘Sex-Linked Inheritance in Drosophila’, Carnegie Institute of Washington, # 237, pp. 1–92.

    Google Scholar 

  • Morgan, T. H., C. B. Bridges, and A. H. Sturtevant (1925), ‘The Genetics of Droso- phila’, Bibliographia Genetica 2:1-262.

    Google Scholar 

  • Morgan, T. H., A. H. Sturtevant, H. J. Muller, and C. B. Bridges (1915, 1922), The Mechanism of Mendelian Inheritance, 1st ed., 1915, 2nd ed., 1922, New York: Henry Holt.

    Google Scholar 

  • Muller, H. J. (1914), ‘The Bearing of the Selection Experiments of Castle and Phillips on the Variability of Genes’, American Naturalist 48: 567-576.

    Article  Google Scholar 

  • Muller, H. J. (1916: I-IV), ‘The Mechanism of Crossing Over I-IV’, American Naturalist 50: I: 193-221

    Google Scholar 

  • Muller, H. J. (1916: I-IV), ‘The Mechanism of Crossing Over I-IV’, American Naturalist 50: II: 284-305

    Google Scholar 

  • Muller, H. J. (1916: I-IV), ‘The Mechanism of Crossing Over I-IV’, American Naturalist 50: III: 365-366

    Google Scholar 

  • Muller, H. J. (1916: I-IV), ‘The Mechanism of Crossing Over I-IV’, American Naturalist 50: IV: 421-434

    Google Scholar 

  • Muller, H. J. (1920), ‘Are the Factors of Heredity Arranged in a Line?’, American Naturalist 54: 97-121.

    Article  Google Scholar 

  • Muller, H. J. (1950), ‘Our Load of Mutations’, American Journal of Human Genetics 2: 111-176.

    Google Scholar 

  • Owen, A. R. G. (1950), ‘The Theory of Genetical Recombination’, Advances in Genetics Research 3: 117-157.

    Article  Google Scholar 

  • Plough, H. H. (1917), ‘The Effects of Temperature on Crossing Over’, Journal of Experimental Zoology 24: 148-193 (data appendix: 194-209).

    Article  Google Scholar 

  • Provine, W. B. (1986), Sewall Wright and Evolutionary Biology, Chicago, University of Chicago Press.

    Google Scholar 

  • Sarkar, Sahotra (1989), Reductionism and Molecular Biology, Ph. D. dissertation, Department of Philosophy, The University of Chicago.

    Google Scholar 

  • Sarkar, Sahotra (1992), ‘Models of Reduction and Categories of Reductionism’, Synthese 91: 167-194.

    Article  Google Scholar 

  • Schank, Jeffrey C. (1991), Computer Simulation and Experimental Design in Biology, Ph.D. dissertation, Committee on the Conceptual Foundations of Science, The University of Chicago.

    Google Scholar 

  • Sinnott, E. W. and L. C. Dunn (1932), Principles of Genetics, New York: McGraw-Hill.

    Google Scholar 

  • Snyder, Lawrence H. (1935), The Principles of Heredity, Boston: D. C. Heath.

    Google Scholar 

  • Stern, Curt and Anna Sherwood (1967), A Mendel Sourcebook, New York: Schocken Books.

    Google Scholar 

  • Strickberger, M. (1968), Genetics, New York: MacMillan.

    Google Scholar 

  • Sturtevant, A. H. (1913), ‘The Linear Arrangement of Six Sex-Linked Factors in Drosophila, as Shown by Their Mode of Association’, Journal of Experimental Zoology 14: 43-59.

    Article  Google Scholar 

  • Sturtevant, A. H. (1914), ‘The Reduplication Hypothesis as Applied to Drosophila’, American Naturalist 48: 535-549.

    Google Scholar 

  • Sturtevant, A. H. (1919), ‘Inherited Linkage Variations in the Second Chromosome’, Carnegie Institute of Washington Publication # 278, Part III, pp. 305-341.

    Google Scholar 

  • Sturtevant, A. H. (1921b), ‘A Case of Rearrangement of Genes in Drosophila’, Proceedings of the National Academy of Science 7: 235-237.

    Google Scholar 

  • Sturtevant, A. H. (1926), ‘A Crossover Reducer in Drosophila melanogaster Due to Inversion of a Section of the Third Chromosome’, Biologische Zentralblatt 46: 697-702.

    Google Scholar 

  • Sturtevant, A. H. (1931), ‘Known and Probable Inverted Sections of the Autosomes of Drosophila melanogaster’, Carnegie Institute of Washington Publication # 421, pp. 1–27.

    Google Scholar 

  • Sturtevant, A. H. and G. W. Beadle (1939), An Introduction of Genetics, Philadelphia: W. B. Saunders. (facsimile reprint by Dover Books, 1962.)

    Google Scholar 

  • Sutton, W. S. (1903), ‘The Chromosomes in Heredity’, Biological Bulletin of the Marine Biological Laboratory at Woods Hole 4: 231-248.

    Article  Google Scholar 

  • Trow, A. H. (1913), ‘Forms of Reduplication - Primary and Secondary’, Journal of Genetics, 2: 313-324.

    Article  Google Scholar 

  • van Fraasen, Bas (1980), The Scientific Image, Oxford: The Clarendon Press.

    Book  Google Scholar 

  • Waters, K. (1990), ‘Why the Anti-Reductionist Concensus Won’t Survive: The Case of Classical Mendelian Genetics’, in A. Fine, M. Forbes, and L. Wessels, eds., PSA- 1990, vol. 1, East Lansing, Michigan: The Philosophy of Science Association, pp. 125-139.

    Google Scholar 

  • Weinstein, A. (1918), ‘Coincidence of Crossing Over in Drosophila melanogaster (Ampelophelia)’, Genetics 3: 135-159; tables to p. 181.

    Google Scholar 

  • Weinstein, A. (1935), ‘The Theory of Multiple Strand Crossing Over’, Genetics 21: 155-199.

    Google Scholar 

  • Wimsatt, W. C. (1976a), ‘Reductionism, Levels of Organization and the Mind-Body Problem’, in G. Globus, G. Maxwell, and I. Savodnik, eds., Consciousness and the Brain, New York: Plenum, pp. 199-267.

    Google Scholar 

  • Wimsatt, W. C. (1976b), ‘Reductive Explanation: A Functional Account’, in A. C. Michalos, C. A. Hooker, G. Pearce, and R. S. Cohen, eds., PSA-1976 (Boston Studies in the Philosophy of Science, volume 30) Dordrecht: Reidel, pp. 671-710.

    Google Scholar 

  • Wimsatt, W. C. (1981a), ‘Robustness, Reliability and Overdetermination’, in M. Brewer and B. Collins, eds., Scientific Inquiry and the Social Sciences, San Francisco: Jossey-Bass, pp. 124-163.

    Google Scholar 

  • Wimsatt, W. C. (1987), ‘False Models as Means to Truer Theories’, in M. Nitecki and A. Hoffman, eds., Neutral Models in Biology, London: Oxford University Press, pp. 23-55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wimsatt, W.C. (1992). Golden Generalities and Co-opted Anomalies: Haldane vs. Muller and the Drosophila Group on the Theory and Practice of Linkage Mapping. In: Sarkar, S. (eds) The Founders of Evolutionary Genetics. Boston Studies in the Philosophy of Science, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2856-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2856-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3392-0

  • Online ISBN: 978-94-011-2856-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics