Skip to main content

A New Method in Probabilistic Number Theory

  • Chapter
Probability Theory and Applications

Part of the book series: Mathematics and Its Applications ((MAIA,volume 80))

Abstract

Probabilistic number theory can be described as the result of the fusion of probability theory and asymptotic estimates, where the integral of a random variable is replaced by the arithmetical mean-value. In this context, divisibility by a prime p is an event A p, and the A p are statistically independent of one another, where the underlying ”measure” is given by the arithmetical mean-value (or asymptotic density).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billingsley P., The probability of additive arithmetical functions, Ann. of Prob., 2 (1974), 749–791.

    Article  MathSciNet  MATH  Google Scholar 

  2. Daboussi H., Indlekofer K.-H., Two elementary proofs of Halász’s theorem, Math.Z., 209 (1992), 43–52.

    Article  MathSciNet  MATH  Google Scholar 

  3. Elliott P.D.T.A., Probabilistic number theory I., Springer, Heidelberg-New York, 1979.

    Book  Google Scholar 

  4. Galambos J., Distribution of additive and multiplicative functions, Proceedings 1971. Lecture Notes in Math., 251 (1972), 127–139.

    Article  MathSciNet  Google Scholar 

  5. Gillma L., Jerison M., Rings of continuous functions, Springer, Heidelberg-New York, 1976.

    Google Scholar 

  6. Halmos P.R., Lectures on ergodic theory, Chelsea, New York, 1956.

    MATH  Google Scholar 

  7. Indlekofer K.-H., A mean-value theorem for multiplicative functions, Math. Z. 172 (1980), 255–271.

    Article  MathSciNet  MATH  Google Scholar 

  8. Indlekofer K.-H., On some spaces of arithmetical functions I., (Preprint 1990), Anal.Math. (to appear)

    Google Scholar 

  9. Indlekofer K.-H., Properties of uniformly summable functions, (Preprint 1980), Periodica Math. Hung., 17 (1986), 143–161.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kelley J.L., General topology, Springer, Heidelberg-New York, 1955.

    MATH  Google Scholar 

  11. Knopfmacher J., Fourier analysis of arithmetical functions, Annali di Math. pura ed applicata, CIX (1976), 177–201.

    Article  MathSciNet  Google Scholar 

  12. Mauclaire J.-L., Intégration et théorie des nombres, Herrmann, Paris, 1986.

    MATH  Google Scholar 

  13. Mauclaire J.-L., Integration and number theory, Proc.prospects of Math. Sci.World Sci.Publ., Singapour, 1988, 97–125.

    Google Scholar 

  14. Schwarz W., Spilker J., Eine Anwendung des Approximationssatzes von Weierstrass-Stone auf Ramanujan Summen, Niew Archief vor Wiskunde, (3), 19 (1971), 198–209.

    MathSciNet  MATH  Google Scholar 

  15. Wirsing E., Das asymptotische Verhalten von Summer über multiplikative Funktionen II., Acta Math.Acad.Sci.Hung. 18 (1967), 411–467.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zygmund A., Trigonometrical series, Dover, 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Indlekofer, KH. (1992). A New Method in Probabilistic Number Theory. In: Galambos, J., Kátai, I. (eds) Probability Theory and Applications. Mathematics and Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2817-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2817-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5252-8

  • Online ISBN: 978-94-011-2817-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics