Skip to main content

Tail Behavior in Wicksell’s Corpuscle Problem

  • Chapter
Book cover Probability Theory and Applications

Part of the book series: Mathematics and Its Applications ((MAIA,volume 80))

Abstract

We investigate the shapes of upper tails of distributions of ’ sphere radii’ and ‘circle radii’ that are connected by the Wicksell integral transformation. It will be shown in which way the domains of attraction are related to each other and prove that the distribution of the ‘circle radius’ is approximately of generalized Pareto-type if the ’ sphere radius’ distribution is of that type. The statistical relevance of our findings is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blödner R., Mühlig P., and Nagel W.. The comparison by simulation of solutions of Wicksell’s corpuscle problem, J. Microscopy, 135 (1984), 61–74.

    Article  Google Scholar 

  2. Csiszár I., Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, MTA Mat. Kut. Int. Közl., 8 (1963), 85–108.

    MATH  Google Scholar 

  3. Csörgö S. and Mason D.M., Simple estimators of the endpoint of a distribution, Extreme Value Theory, ed. J. Hiisler and R.-D. Reiss, Lecture Notes in Statistics, 51, Springer, New York, 1989, 132–147.

    Google Scholar 

  4. Falk M., Best attainable rate of joint convergence of extremes, Extreme Value Theory, ed. J. Hüsler and R.-D. Reiss, Lecture Note in Statistics, 51, Springer, New York, 1989, 1–9.

    Chapter  Google Scholar 

  5. Falk M., A note on generalized Pareto distributions and the k upper extremes, Prob. Theory Rel.Fields, 85 (1990), 499–503.

    Article  MathSciNet  MATH  Google Scholar 

  6. Falk M. and Marohn F., Von Mises conditions revisited, University of Eichstätt, Preprint 91-002.

    Google Scholar 

  7. Falk M. and Reiss R.-D., Poisson approximation of empirical processes, Statist. Probab. Letters, 1992.

    Google Scholar 

  8. Galambos J., The Asymptotic Theory of Extreme Order Statistics, 2nd ed., Melbourne, Florida, Krieger, 1987.

    Google Scholar 

  9. Gradshteyn I.S. and Ryzhik I.M., Table of Integrals, Series and Products, Academic Press, New York, 1965.

    Google Scholar 

  10. de Haan L., On Regular Variation and Its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tracts 32, Amsterdam, 1975.

    Google Scholar 

  11. Hall P., On estimating the endpoint of a distribution, Ann.Statist. 10 (1982), 556–568.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hall P. and Welsh A.H., Adaptive estimates of parameters of regular variation, Ann.Statist., 13 (1985), 331–341.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jensen E.B., A design-based proof of Wicksell’s integral equation, J. Microscopy, 136 (1984), 345–348.

    Article  Google Scholar 

  14. Liese F. and Vajda I., Convex Statistical Distances, Teubner, Leipzig, 1987.

    MATH  Google Scholar 

  15. Matthes K., Kerstan J. and Mecke J., Infinitely Divisible Point Processes, Wiley, Chichester, 1978.

    MATH  Google Scholar 

  16. Nychka D.W., Wahba G., Goldfarb S. and Pugh T. Crossvalidated spline method for the estimation of three-dimesional tumor size distributions for observations on two-dimensional cross sections, JASA 79 (1984), 832–846.

    Article  MathSciNet  MATH  Google Scholar 

  17. Nychka D.W., Silverman B.W., Jones M.C. and Wilson J.D., A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emmission tomography, J. R. Statist. Soc B, 52 (1990), 271–324.

    MathSciNet  MATH  Google Scholar 

  18. Reiss R.-D., Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics, Springer, New York, 1989.

    Book  MATH  Google Scholar 

  19. Reiss R.-D., Extended extreme value model and adaptive estimation of the tail index, Extreme Value Theory, ed. J. Hüsler and R.-D. Reiss, Lecture Notes in Statistics, 51, Springer, New York, 1989, 156–165.

    Chapter  Google Scholar 

  20. Resnick S.I., Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987.

    MATH  Google Scholar 

  21. Stoyan D., Kendall W.S. and Mecke J., Stochastic Geometry and Its Applications, Wiley, Chichester, 1987.

    MATH  Google Scholar 

  22. Weibel E.R., Stereological Methods, Vol. 2., Academic Press, London, 1980.

    Google Scholar 

  23. Weiss L., Asymptotic inference about a density function at an end of its range, Nav.Res.Logist. Quart., 18 (1971), 111–114.

    Article  MATH  Google Scholar 

  24. Wicksell S.D., The corpuscle problem I., Biometrika., 17 (1925), 84–99.

    MATH  Google Scholar 

  25. Wicksell S.D., The corpuscle problem II., Biometrika, 18 (1926), 152–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dress, H., Reiss, RD. (1992). Tail Behavior in Wicksell’s Corpuscle Problem. In: Galambos, J., Kátai, I. (eds) Probability Theory and Applications. Mathematics and Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2817-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2817-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5252-8

  • Online ISBN: 978-94-011-2817-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics