Skip to main content

Random Walk Processes and their Various Applications

  • Chapter
Probability Theory and Applications

Part of the book series: Mathematics and Its Applications ((MAIA,volume 80))

Abstract

This paper is concerned with two stochastic processes; namely, a Bernoulli excursion and a tied-down random walk. For each process a random variable is defined as the area of a random set bounded by the real line and the sample function of the process. The results derived for random walks are applied to the theory of random trees to determine the distribution and the asymptotic distribution of the total height of a tree, and to the theory of order statistics to determine the asymptotic behavior of the moments and the distribution of a statistic which measures the deviation between two empirical distribution functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz M. and Stegun I.A., Handbook of Mathematical Functions, Dover, New York, 1965.

    Google Scholar 

  2. Biane Ph. and Yor M., Valeurs principales associées aux temps locaux browniens, Bulletin des Sciences Mathématiques, 111 (1987), 23–101.

    MathSciNet  MATH  Google Scholar 

  3. Carleman T., Sur le problème des moments, Comptes Rendus Acad. Sci. Paris, 174 (1922), 1680–1682.

    MATH  Google Scholar 

  4. Carleman T., Les Fonctions Quasi-Analytiques, Gauthier-Villars, Paris, 1926.

    MATH  Google Scholar 

  5. Cohen J.W. and Hooghiemstra G., Brownian excursions, the M/M/1 queue and their occupation times, Mathematics of Operations Research, 6 (1981), 608–629.

    Article  MathSciNet  MATH  Google Scholar 

  6. Darling D.A., On the supremum of a certain Gaussian process, The Annals of Probability, 11 (1983), 803–806

    Article  MathSciNet  MATH  Google Scholar 

  7. Fréchet M. and Shohat J., A proof of the generalized second-limit theorem in the theory of probability, Transactions of the American Mathematical Society, 33 (1931), 533–543.

    Article  MathSciNet  Google Scholar 

  8. Getoor R.K. and Sharpe M.J., Excursions of Brownian motion and Bessel processes, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 47 (1979), 83–106.

    Article  MathSciNet  MATH  Google Scholar 

  9. Groeneboom P., Brownian motion with parabolic drift, Probability Theory and Related Fields, 81 (1989), 79–109.

    Article  MathSciNet  Google Scholar 

  10. Hardy G.H. and Wright E.M., An Introduction to the Theory of Numbers, Third edition, Oxford University Press, 1956.

    Google Scholar 

  11. Johnson B.McK. and Killeen T., An explicit formula for the c.d.f. of the L 1 norm of the Brownian bridge, The Annals of Probability, 11 (1983), 807–808.

    Article  MathSciNet  MATH  Google Scholar 

  12. Louchard G., Kac’s formula, Lévy’s local time and Brownian excursion, Journal of Applied Probability, 21 (1984), 479–499.

    Article  MathSciNet  MATH  Google Scholar 

  13. Louchard G., The Brownian excursion area: a numerical analysis, Computers and Mathematics with Applications 10 (1984), 413–417. [Erratum: Ibid A 12 (1986), 375].

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller J.C.P., The Airy Integral, Cambridge University Press, 1946.

    Google Scholar 

  15. Ramanujan S., Proof of certain identities in combinatorial analysis, Proceedings of the Cambridge Philosophical Society, 19 (1919), 214–216.

    Google Scholar 

  16. Rice S.O., The integral of the absolute value of the pinned Wiener process—Calculation of its probability density by numerical integration, The Annals of Probability, 10 (1982), 240–243.

    Article  MathSciNet  MATH  Google Scholar 

  17. Shepp L.A., On the integral of the absolute value of the pinned Wiener process, The Annals of Probability, 10 (1982), 234–239.

    Article  MathSciNet  MATH  Google Scholar 

  18. Slater L.J., Confluent Hypergeometric Functions, Cambridge University Press, 1950.

    Google Scholar 

  19. Szekeres G., A combinatorial interpretation of Ramanujan’s continued fraction, Canadian Mathematical Bulletin, 11 (1968), 405–408.

    Article  MathSciNet  MATH  Google Scholar 

  20. Voloshin Ju.M., Enumeration of the terms of the object domains according to the depth of embedding, Soviet Mathematics-Doklady, 15 (1974), 1777–1782.

    MATH  Google Scholar 

  21. Wolfram S., Mathematica. A System for Doing Mathematics by Computer, Addison-Wesley, Redwood City, California, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Takács, L. (1992). Random Walk Processes and their Various Applications. In: Galambos, J., Kátai, I. (eds) Probability Theory and Applications. Mathematics and Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2817-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2817-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5252-8

  • Online ISBN: 978-94-011-2817-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics