Skip to main content

Gene flow among seed plant populations

  • Chapter
Population Genetics of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 42))

Abstract

Gene flow is a critical determinant of population genetic structure, playing an important role in both evolutionary and applied plant population genetics. Four methods have been used to estimate rates of gene flow among plant populations. I review and reconcile the data collected by these methods. The following generalization emerges: although gene flow varies substantially among species, populations, seasons, and even individual plants, at physical isolation distances of hundreds to thousands of meters, gene flow levels are frequently sufficient to counteract genetic drift and moderate levels of directional selection. This pattern suggests the genetic structure of natural plant populations is more dynamic than generally supposed. Furthermore, substantial and variable gene flow has implications for plant breeding, conservation genetics, and the potential for the escape of engineered genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, W. T. and Birkes, D. S. 1990. Estimating mating patterns in forest tree populations.In: Hattemer, H. H. and Fineschi, S. (Eds) Biochemical markers in the population genetics of forest trees. S.P.B. Academic Publishing, BV. The Hague (in press).

    Google Scholar 

  • Allendorf, F. W. 1983. Isolation, gene flow, and genetic differentiation among populations.In: Schonewald-Cox, C. M., Chambers, S. M., MacBryde, B. and Thomas, W. L. (Eds) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin Cummings Publishing, Menlo Park. pp. 51–65.

    Google Scholar 

  • Antonovics, J. 1968. Evolution in closely adjacent plant populations. VI. Manifold effects of gene flow. Heredity 32: 507–524.

    Google Scholar 

  • Barton, N. H. and Slatkin, M. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56: 409–415.

    Article  PubMed  Google Scholar 

  • Bos, M., Harmens, H. and Vrieling, K. 1986. Gene flow in Plantago. I. Gene flow and neighborhood size in P. lanceolata. Heredity 56: 43–54.

    Article  Google Scholar 

  • Bradshaw, A. D. 1972. Some evolutionary consequences of being a plant. Evol. Biol. 5: 25–47.

    Article  Google Scholar 

  • Campbell, D. R. and Waser, N. M. 1989. Variation in pollen flow within and among populations of Ipomopsis aggregata. Evolution 43: 1444–1455.

    Article  Google Scholar 

  • Chakraborty, R., Meagher, T. R., and Smouse, P. E. 1988. Parentage analysis with genetic markers in natural populations. I. The expected proportion of offspring with unambiguous paternity. Genetics 118: 527–536.

    PubMed  CAS  Google Scholar 

  • Crane, M. B. and Mather, K. 1943. The natural cross-pollination of crop plants with particular reference to the radish. An. Appl. Biol. 30: 301–308.

    Article  Google Scholar 

  • Crow, J. F. 1986. Basic concepts in population, quantitative, and evolutionary genetics. New York, W. H. Freeman.

    Google Scholar 

  • Devlin, B. and Ellstrand, N. C. 1990. The development and application of a refined method for estimating gene flow from angiosperm paternity analysis. Evolution 44: 248–259.

    Article  Google Scholar 

  • Devlin, B., Roeder, K., and Ellstrand, N. C. 1988. Fractional paternity assignment: theoretical development and comparison to other methods. Theor. App. Genet. 76: 369–380.

    Article  Google Scholar 

  • Docters van Leeuwen, W. M. 1936. Krakatau, 1883 to 1933. Ann. Jard. Bot. Buitenzorg. 56-57: 1–506.

    Google Scholar 

  • Edmonds, R. L. 1979. Aerobiology: the ecological systems approach. Dowden, Hutchinson, and Ross. Stroudsburg, PA.

    Google Scholar 

  • El-Kassaby, Y. A. and Ritland, K. 1986. Low levels of pollen contamination in a Douglasfir seed orchard as detected by allozyme markers. Silv. Genet. 35: 224–228.

    Google Scholar 

  • Ellstrand, N. C. 1988. Pollen as a vehicle for the escape of engineered genes? In: Hodgson, J. and Sugden, A. M. (Eds) Planned Release of Genetically Engineered Organisms (TrendsinBiotechnology/TrendsinEcologyandEvolutionSpecialPublication) Elsevier Publications, Cambridge, pp. S30–S32.

    Google Scholar 

  • Ellstrand, N. C. 1991. Gene flow by pollen: implications for plant conservation genetics. Oikos, (in press).

    Google Scholar 

  • Ellstrand, N. C., Devlin, B. and Marshall, D. L. 1989. Gene flow by pollen into small populations: data from experimental and natural stands of wild radish. Proc. Nat. Acad. Sci., U.S.A. 86: 9044–9047.

    Article  CAS  Google Scholar 

  • Ellstrand, N. C. and Hoffman. C. A. 1990. Hybridization as an avenue for escape of engineered genes. BioScience 40: 438–442.

    Article  Google Scholar 

  • Ellstrand, N. C. and Marshall, D. L. 1985. Interpopulation gene flow by pollen in wild radish, Raphanus sativus. Am. Nat. 126: 606–616.

    Article  Google Scholar 

  • Ellstrand, N. C., Torres, A. M., and Levin, D. A. 1978. Density and the rate of apparent outcrossing in Helianthus annum (Asteraceae). Syst. Bot. 3: 403–407.

    Article  Google Scholar 

  • Endler, J. A. 1973. Gene flow and population differentiation. Science 179: 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Endler, J. A. 1977. Geographic variation, speciation, and clines. Princeton University Press, Princeton.

    Google Scholar 

  • Ennos, R. A. and Dodson, R. K. 1987. Pollen success, functional gender, and assortative mating in an experimental plant population. Heredity 58:119–128.

    Article  Google Scholar 

  • Epperson, B. K. 1990. Spatial patterns of genetic variation within plant populations. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S. (Eds) Plant population genetics, breeding and resources. Sinauer Associates, Sunderland. pp. 229–253.

    Google Scholar 

  • Friedman, S. T. and Adams, W. T. 1985. Estimation of gene flow into two seed orchards of loblolly pine (Pinits taeda L.). Theor. Appl. Genet. 69:609–615.

    Article  Google Scholar 

  • Fryxell, P. A. 1957. Mode of reproduction in higher plants. Bot. Rev. 23: 135–233.

    Article  Google Scholar 

  • Gillespie, J. H. 1975. The role of migration in the genetic structure of populations in temporally and spatially varying environments. I. Conditions for polymorphism. Am. Nat. 109:127–135.

    Article  Google Scholar 

  • Golenberg, E. M. 1987. Estimation of gene flow and genetic neighborhood size by indirect methods in a selfing annual, Triticum dicoccoides. Evolution 41:1326–1334.

    Article  Google Scholar 

  • Govindaraju, D. R. 1988a. Relationship between dispersal ability and levels of gene flow in plants. Oikos 52: 31–35.

    Article  Google Scholar 

  • Govindaraju, D. R. 1988b. A note on the relationship between outcrossing rate and gene flow in plants. Heredity 61: 401–404.

    Article  Google Scholar 

  • Govindaraju, D. R. 1989. Estimates of gene flow in forest trees. Biol. J. Linn. Soc. 37: 345–357.

    Article  Google Scholar 

  • Grant, V. 1980. Gene flow and the homogeneity of species populations. Biol. Zbl. 99: 157–169.

    Google Scholar 

  • Grant, V. 1985. The problem of gene flow on a geographical scale. Zhurnal Obschei Biologii 46: 20–31.

    Google Scholar 

  • Guries, R. R. and Ledig, F. T. 1982. Genetic diversity and population structure in pitch pine (Pinus rigida Mill.). Evolution 36: 387–402.

    Article  Google Scholar 

  • Haldane, J. B. S. 1930. A mathematical theory of natural and artificial selection. Part IV. Isolation. Proc. Cambridge Philos. Soc. 26: 220–230.

    Article  Google Scholar 

  • Hamrick, J. L. 1982. Plant population genetics and evolution. Am. J. Bot. 69: 1685–1693.

    Article  Google Scholar 

  • Hamrick, J. L. 1987. Gene flow and distribution of genetic variation in plant populations. In: Urbanska, K. (Ed) Differentiation in higher plants. Academic Press, New York, pp. 53–67.

    Google Scholar 

  • Hamrick, J. L., Griswold, G. B., and Godt, M. J. 1992. Association between Slatkins measure of gene flow and the dispersal ability of plant species. Am. Nat. (in press).

    Google Scholar 

  • Hamrick, J. L. and Loveless, M. D. 1986. The influence of seed dispersal mechanisms on the genetic structure of plant populations. In: Estrada, A. and Fleming, T. H. (Eds) Frugivores and seed dispersal. Dr W Junk, Publishers, Dordrecht, pp. 211–223.

    Chapter  Google Scholar 

  • Hamrick, J. L. and Loveless, M. D. 1989. The genetic structure of tropical tree populations, associations with reproductive biology. In: Bock, J. H. and Linhart, Y. B. (Eds) The evolutionary ecology of plants. Westview Press, Boulder, pp. 129–146.

    Google Scholar 

  • Hamrick, J. L. and Schnabel, A.1985. Understanding the genetic structure of plant populations: some old problems and a new approach. In: Gregorius, H. R. (Ed.) Population genetics in forestry. Springer-Verlag, Berlin, pp. 50–70.

    Chapter  Google Scholar 

  • Handel, S. N. 1976. Restricted pollen flow of two woodland herbs by neutron-activation analysis. Nature 260: 422–423.

    Article  Google Scholar 

  • Handel, S. N. 1982. Dynamics of gene flow in an experimental population of Cucumis melo (Cucurbitaceae). Am. J. Bot. 69: 1538–1546.

    Article  Google Scholar 

  • Handel, S. N. 1983a. Pollination ecology, plant population structure, and gene flow. In: Real, L. (Ed) Pollination biology. Academic Press, Orlando. pp. 163–211.

    Google Scholar 

  • Handel, S. N. 1983b. Contrasting gene flow patterns and genetic subdivision in adjacent populations of Cucumis sativus (Cucurbitaceae). Evolution 37: 760–771.

    Article  Google Scholar 

  • Howe, H. F. and Smallwood, J. 1982. Ecology of seed dispersal. Ann. Rev. Ecol. Syst. 13: 201–228.

    Article  Google Scholar 

  • Jain, S. K. and Bradshaw, A. D.1966. Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21: 407–441.

    Article  Google Scholar 

  • Kimura, M. and Weiss, G. 1964. The stepping-stone model of population structure and the decrease of genetic correlation with distance. Genetics 49: 561–576.

    PubMed  CAS  Google Scholar 

  • Knight, S. E. and Waller, D. M. 1987. Genetic consequences of outcrossing in the cleistogamous annual, Impatiens capensis. I. Population-genetic structure. Evolution 41: 969– 978.

    Article  Google Scholar 

  • Levin, D. A. 1975. Pest pressure and recombination systems in plants. Am. Nat. 109: 437–451.

    Article  Google Scholar 

  • Levin, D. A. 1978. Some genetic consequences of being a plant. In Brussard, P. F. (Ed) Ecological genetics: the interface. Springer-Verlag, New York. pp. 189–212.

    Chapter  Google Scholar 

  • Levin, D. A. 1981. Dispersal versus gene flow in plants. Ann. Mo. Bot. Gard. 68: 233–253.

    Article  Google Scholar 

  • Levin, D. A. 1983. An immigration-hybridization episode in Phlox. Evolution 37: 575–582.

    Article  Google Scholar 

  • Levin, D. A. 1984. Immigration in plants: an exercise in the subjunctive. In: Dirzo, R. and Sarukhan, J. (Eds) Perspectives on plant population ecology. Sinauer, Sunderland. pp. 242–260.

    Google Scholar 

  • Sarukhan, J. (Eds) Perspectives on plant population ecology. Sinauer, Sunderland, pp. 242–260.

    Google Scholar 

  • Sarukhan, J. (Eds) 1988. Consequences of stochastic elements in plant migration. Am. Nat. 132: 643–651.

    Google Scholar 

  • Levin, D. A. and Kerster, H. W. 1968. Local gene dispersal in Phlox. Evolution 22: 130–139.

    Article  Google Scholar 

  • Levin, D. A. and Kerster, H. W. 1974. Gene flow in seed plants. Evol. Biol. 7: 139–220.

    Article  Google Scholar 

  • Meagher, T. R. and Thomson, E. 1986. The relationship between single-parent and parentpair likelihoods in genealogy reconstruction. Theor. Pop. Biol. 29: 87–106.

    Article  Google Scholar 

  • Meagher, T. R. and Thomson, E. 1987. Analysis of parentage for naturally established seedlings of Chamaelirium luteum (Liliaceae). Ecology 68: 803–812.

    Article  Google Scholar 

  • Moran, G. F. and Hopper, S. D. 1983. Genetic diversity and the insular population structure of the rare granite rock species, Eucalyptus caesia Benth. Austral. J. Bot. 31: 161–172.

    Article  Google Scholar 

  • Muona, O. 1990. Population genetics in forestry. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S. (Eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland, pp. 282–298.

    Google Scholar 

  • Neale, D. B. 1983. Population genetic structure of the shelterwood regeneration system in southwest Oregon. Ph.D. Diss. Oregon State Univ., Corvallis.

    Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA, 70: 3321–3323.

    Article  PubMed  CAS  Google Scholar 

  • Plucknett, D. L., Smith, N. J. H., Williams, J. H., and Anishetty, N. M. 1987. Gene Banks and the World’s Food. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Richards, A. J. 1986. Plant Breeding Systems. Allen and Unwin, London.

    Google Scholar 

  • Rieseberg, L. H., Zona, S., Aberbom, L. and Martin, T. D. 1989. Hybridization in the island endemic, Catalina mahogany. Conservation Biol. 3: 52–58.

    Article  Google Scholar 

  • Rohlf, F. J. and Schnell, G.D. 1971. An investigation of the isolation by distance model. Am. Nat. 105: 295–324.

    Article  Google Scholar 

  • Sanderson, N. 1989. Can gene flow prevent reinforcement? Evolution 43: 1223–1235.

    Article  Google Scholar 

  • Schaal, B. A. 1980. Measurement of gene flow in Lupinus texensis. Nature 284: 450–451.

    Article  Google Scholar 

  • Schmitt, J. 1980. Pollinator foraging behavior and gene dispersal in Senecio (Compositae). Evolution 34: 934–943.

    Article  Google Scholar 

  • Schoen, D. J. and Stewart, S. C. 1987. Variation in male fertilities and pairwise mating probabilities in Picea glauca. Genetics 116:141–152.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. 1973. Gene flow and selection in a cline. Genetics 75: 733–756.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. 1981. Estimating levels of gene flow in natural populations. Genetics 99:323–335.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. 1985a. Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 393–430.

    Article  Google Scholar 

  • Slatkin, M. 1985b. Rare alleles as indicators of gene flow. Evolution 39: 53–65.

    Article  Google Scholar 

  • Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

    Article  PubMed  CAS  Google Scholar 

  • Slatkin, M. and Barton, N. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368.

    Article  Google Scholar 

  • Smith, D. B. and Adams, W. T. 1983. Measuring pollen contamination in clonal seed orchards with the aid of genetic markers. In: Proc. 17th Southern Forest Tree Improvement Conference. Univ. Georgia, Athens pp. 69–77.

    Google Scholar 

  • Smyth, C. A. and Hamrick, J. L. 1987. Realized gene flow via pollen in artificial populations of musk thistle, Carduus nutans L. Evolution 41: 613–619.

    Article  Google Scholar 

  • Squillace, A. E. and Long, E. M. 1981. Proportion of pollen from nonorchard sources. In: Franklin, E. C. (Ed) Pollen management handbook. USDA Agricultural Handbook #587, Washington DC, pp. 15–19.

    Google Scholar 

  • Thomson, J. D. and Thomson, B. A. 1989. Dispersal of Erythronium grandiflorum pollen by bumblebees: implications for gene flow and reproductive success. Evolution 43: 657–661.

    Article  Google Scholar 

  • Tonsor, S. J. 1985. Intrapopulational variation in pollen-mediated gene flow in Plantago lanceolata L. Evolution 39: 775–782.

    Article  Google Scholar 

  • Turner, M. E., Stephens, J. C, and Anderson, W. W. 1982. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollinations. Proc. Nat. Acad. Sci., U.S.A. 79: 203–207.

    Article  CAS  Google Scholar 

  • van Dijk, H. 1987. A method for the estimation of gene flow parameters from a population structure caused by restricted gene flow and genetic drift. Theor. Appl. Genet. 73: 724–736.

    Article  Google Scholar 

  • Wade, M. J. and D. E. McCauley. 1988. Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42: 995–1005.

    Article  Google Scholar 

  • Waser, N. M., Vickery, R. K., and Price, M. V. 1982. Patterns of seed dispersal and population differentiation in Mimulus guttatus. Evolution 36: 753–761.

    Article  Google Scholar 

  • Weiss, G. and Kimura, M. 1965. A mathematical analysis of the stepping stone model of genetic correlation. J. Appl. Prob. 2: 129– 149.

    Article  Google Scholar 

  • Willson, M. F. 1983. Plant Reproductive Ecology. John Wiley and Sons, New York.

    Google Scholar 

  • Willson, M. F. 1984. Mating patterns in plants pp. 261–276. In: Dirzo, R. and Sarukhan, J. (Eds) Perspectives on plant population ecology. Sinauer, Sunderland.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    PubMed  CAS  Google Scholar 

  • Wright, S. 1943. Isolation by distance. Genetics 28: 114–138.

    PubMed  CAS  Google Scholar 

  • Wright, S. 1946. Isolation by distance under diverse systems of mating. Genetics 31: 39–59.

    Google Scholar 

  • Wright, S. 1951. The genetical structure of populations. Ann. Eugenics 15: 323–354.

    Google Scholar 

  • Wright, S. 1982. Character change, speciation, and the higher taxa. Evolution 36:427–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ellstrand, N.C. (1992). Gene flow among seed plant populations. In: Adams, W.T., Strauss, S.H., Copes, D.L., Griffin, A.R. (eds) Population Genetics of Forest Trees. Forestry Sciences, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2815-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2815-5_13

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5251-1

  • Online ISBN: 978-94-011-2815-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics