Skip to main content

The effect of dynamic light regimes on Chlorella

II. Minimum quantum requirement and photosynthesis-irradiance parameters

  • Chapter
The Daily Growth Cycle of Phytoplankton

Part of the book series: Developments in Hydrobiology ((DIHY,volume 76))

  • 109 Accesses

Abstract

Comparisons were made of photosynthesis in three light limited cyclostat cultures (LD = 8:16, dilution rate 0.7 d-1) of Chlorella pyrenoidosa, differing only in the dynamics of irradiance supply: as a constant rate, i.e. a block culture; as a sine function of the light period, i.e. a sinusoidal culture; as an 8 h sine function superimposed by an 1 h sine function, i.e. an oscillating culture. The sinusoidal culture had a constant minimum quantum requirement for oxygen evolution (QR) of 10.8 over the photoperiod. The QR of the oscillating culture increased from 24 to 37 during the photoperiod. From changes in a and P max we suggest that: (l)photosynthetic units (PSU) of the block and sinusoidal culture increased in number; (2) increasingly fewer chlorophyll molecules participated in oxygenic photosynthesis with a decreasing turnover time of the PSU’s during an oscillating photoperiod. Values of I k decreased slightly in the block culture, increased slightly in the sinusoidal culture and showed a twofold increase in the oscillating culture. From the ratio of in situ oxygen production (qO2) and P max we infer a balanced equilibrium between photosystem activity and electron transport capacity for the block and sinusoidal culture. We hypothesize that the qO2 values of the oscillating culture underestimated true oxygen production rates due to a nonlinear response at peak light intensities. The results show that a dynamical photoperiod provoked significantly different photosynthetic responses, even though the overall growth rate was unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. M., D. J. Goodschild & W. W. Thomson, 1990. The granal margins of plant thylakoid membranes: an important nonappressed domain. In: M. Baltscheffsky (ed.), Current Research in Photosynthesis. Kluwer Academic Publishers, Dordrecht/Boston/New York: 803–808.

    Google Scholar 

  • Barber, J., 1990. The fluid-mosaic nature of the thylakoid membrane. In: M. Baltscheffsky (ed.), Current Research in Photosynthesis. Kluwer Academic Publishers, Dordrecht/ Boston/New York: 715–724.

    Google Scholar 

  • Bennet, J., K. E. Steinback & C. J. Arntzen, 1980. Regulation of excitation energy transfer by phosphorylation of chloro-plast thylakoid membrane polypeptides. Proc. Natl. Acad. Sci. USA 77: 5253–5257.

    Article  Google Scholar 

  • Bidigare, R. R., O. Schofield & B. B. PrĂ©zelin, 1989. Influence of zeaxanthin and quantum yield of photosynthesis of Syn-echococcus clone WH7803 (DC2). Mar. Ecol. Prog. Ser. 56: 177–188.

    Article  CAS  Google Scholar 

  • Cosper, E., 1982. Influence of light intensity on diel variation in rates of growth, respiration and organic release of a marine diatom: comparison of diurnally constant and fluctuating light. J. Plankton. Res. 4: 705–724.

    Article  Google Scholar 

  • Dubinsky, Z., P. G. Falkowski & K. Wyman, 1986. Light harvesting and utilization by phytoplankton. Plant Cell Physiol. 27: 1335–1349.

    CAS  Google Scholar 

  • Dubinsky, Z., P. G. Falkowski, A. F. Post & van Hes, 1987. A system for measuring phytoplankton photosynthesis in a defined light field with an oxygen electrode. J. Plankton Res. 9: 607–612.

    Article  Google Scholar 

  • Doty, M. S. & M. Oguri, 1957. Evidence for a photosynthetic daily periodicity. Limnol. Oceanogr. 2: 37–40.

    Google Scholar 

  • Falkowski, P. G., 1980. Light-shade adaptation in marine phytoplankton. In: P. G. Falkowski (ed.), Primary productivity in the Sea. Plenum Press, New York: 99–119.

    Chapter  Google Scholar 

  • Falkowski, P. G., 1981. Light-shade adaptation and assimilation numbers. J. Plankton. Res. 3: 203–216.

    Article  CAS  Google Scholar 

  • Falkowski, P. G. & T. G. Owens, 1980. Strategies of light-shade adaptations in marine phytoplankton. PI. Physiol. 66: 592–595.

    Article  CAS  Google Scholar 

  • Fee, E. J., 1975. The importance of diurnal variation of photosynthesis vs. light curves to estimates of integral primary production. Verh. int. Ver. Limnol. 19: 39–46.

    Google Scholar 

  • Fujita, Y., Y. Iwama, K. Ohki, A. Murakami & N. Hagiwara, 1989. Regulation of the size of light-harvesting antennae in response to light intensity in the green alga Chlorella pyrenoidosa. PI. Cell. Physiol. 30: 1029–1037.

    CAS  Google Scholar 

  • Govindjee, 1975. Introduction to photosynthesis. In: Govin-djee (ed.), Bioenergetics of Photosynthesis. Academic Press, New York: 29–31.

    Google Scholar 

  • Horton, P., K. Oxborough, D. Rees & J. D. Scholes, 1988. Regulation of the photochemical efficiency of photosys-tem II; consequences for the light response of field photosynthesis. PL Physiol. Biochem. 26: 453–460.

    CAS  Google Scholar 

  • Jassby, A. D. & T. Plait, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.

    Article  CAS  Google Scholar 

  • Kroon, B. M. A., U. M. van Hes & L. R. Mur, 1992a. An algal cyclostat with computer-controlled dynamic light regime. Hydrobiologia 238: 63–70.

    Article  Google Scholar 

  • Kroon, B. M. A., M. Latasa, B. Ibelings & L. R. Mur, 1992b. The effect of dynamic light regimes on Chlorella: I. pigments and cross sections. Hydrobiologia 238: 71–78.

    Article  CAS  Google Scholar 

  • Ley, A. C. & W. L. Butler, 1980. Energy distribution in the photochemical apparatus of Porphyridium omentum in State I and State II. Biochim. Biophys. Acta 592: 349–363.

    Article  PubMed  CAS  Google Scholar 

  • Ley, A. C. & D. Mauzerall, 1982. Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim. Biophys. Acta 680: 95–106.

    Article  CAS  Google Scholar 

  • Lorenzen, C. J., 1963. Diurnal variation in photosynthetic activity of natural phytoplankton populations. Limnol. Oceanogr. 8: 56–62.

    Article  Google Scholar 

  • MacCaull, W. A. & T. Piatt, 1977. Diel variations in the photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr. 22: 723–731.

    Article  Google Scholar 

  • Marra, J. & K. Heinemann, 1982. Photosynthesis response by phytoplankton to sunlight variability. Limnol. Oceanogr. 27: 1141–1153.

    Google Scholar 

  • Osborne, B. A. & R. J. Geider, 1987. The minimum photon requirement for photosynthesis. An analysis of the data of Warburg & Burk (1950) and Yuan, Evans & Daniels (1955). New Phytol. 106: 631–644.

    Article  CAS  Google Scholar 

  • Osborne, B. A. & R. J. Geider, 1988. Measurements of minimum photon requirements. Photosynth. Res. 16: 291–292.

    Article  CAS  Google Scholar 

  • Post, A. F., F. Eijgenraam & L. R. Mur, 1985. Influence of light period length on photosynthesis and synchronous growth of the green alga Scenedesmus protuberans. Br. phy-col. J. 20: 391–397.

    Article  Google Scholar 

  • Post, A. F., J. G. Loogman & L. R. Mur, 1986. Photosynthesis, carbon flows and growth in Oscillatoria agardhii Gomont in environments with a periodic supply of light. J. gen. Microbiol. 132: 2129–2136.

    CAS  Google Scholar 

  • PrĂ©zelin, B. B., 1981. Light reactions in photosynthesis. In: Physiological Bases of Phytoplankton Ecology. T. Piatt (ed.), Can. Bull. Fish, aquat. Sci. 210: 1–46.

    Google Scholar 

  • PrĂ©zelin, B. B., 1992. Diel periodicity in phytoplankton productivity. Hydrobiologia 238: 1–35.

    Article  Google Scholar 

  • PrĂ©zelin, B. B., M. Putt & H. E. Glover, 1986. Diurnal patterns in photosynthetic capacity and depth-dependent photosynthesis-irradiance relationships in Synechococcus spp. and larger phytoplankton in three water masses in the Northwest Atlantic Ocean. Mar. Biol. 91: 205–217.

    Article  Google Scholar 

  • Richardson, K., J. Beardall & J. A. Raven, 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93: 157–191.

    Article  Google Scholar 

  • Schanz, F. & Z. Dubinsky, 1988. The afternoon depression in primary productivity in a high rate oxidation pond. J. Plankton. Res. 10: 373–383.

    Article  CAS  Google Scholar 

  • Senger, H. & Ph. Fleischhacker, 1978. Adaptation of the photosynthetic apparatus of Scenedesmus obliquus to strong and weak light conditions. I. Differences in pigments, photosynthetic capacity, quantum yield and dark reactions. Physiol. PI. 43: 35–42.

    Article  CAS  Google Scholar 

  • Shin, C. N., G.-Y. Rhee & J. Chen, 1987. Phosphate requirement, photosynthesis, and diel cell cycle of Scenedesmus obliquus under fluctuating light. Can. J. Fish, aquat. Sci. 44: 1753–1758.

    Article  Google Scholar 

  • Tilzer, M. M., 1984. The quantum yield as a fundamental parameter controlling vertical photosynthetic profiles of phytoplankton in Lake Constance. Arch. Hydrobiol./ Suppl. 69: 169–198.

    Google Scholar 

  • Sournia, A., 1974. Circadian periodicities in natural populations of marine phytoplankton. Adv. Mar. Biol. 12: 325–389.

    Article  Google Scholar 

  • Williams, W. P. & J. F. Allen, 1987. Stale 1/State 2 changes in higher plants and algae. Photosynth. Res. 13: 19–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. Berman H. J. Gons L. R. Mur

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kroon, B.M.A., Burger-Wiersma, T., Visser, P.M., Mur, L.R. (1992). The effect of dynamic light regimes on Chlorella . In: Berman, T., Gons, H.J., Mur, L.R. (eds) The Daily Growth Cycle of Phytoplankton. Developments in Hydrobiology, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2805-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2805-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5246-7

  • Online ISBN: 978-94-011-2805-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics