Groups and Related Topics pp 67-81 | Cite as
Construction of Some Hopf Algebras
Chapter
- 171 Downloads
Abstract
It is a lucky opportunity - and I thank the organizers for the invitation to a citizen of a State not involved in the meeting - to speak in this Symposium, devoted to such an outstanding physicist, about a set of quantum groups which may have immediate relevance in physics. I mean those q-deformed Hopf algebras whose q = 1 limits are, besides the algebra of Heisenberg, the usuat kinematical symmetry groups, namely, Euclides, Poincaré, Galilei and Lorentz ones, which are noncompact or inhomogeneous or both.
Keywords
HOPF Algebra Quantum Group Heisenberg Group Contraction Method Classical Giration
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]S.L. Woronowicz and and S. Zakrzewski,“Quantum deformations of Lorentz group. Hopf*;-algebra level”, Preprint.Google Scholar
- [2]A. Schirrmacher,“Aspects of Quantizing Lorentz Symmetry” MPI-PTh/91–77,Talk given at Cargèse Institut,July 15-27,1991. Celeghini E., Giachetti R., Reyman A., Sorace E. and Tarlini M., Lett. in Math. Phys. 23 (1991) 45.ADSCrossRefGoogle Scholar
- [3]E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, J. Math. Phys. 31 (1990) 2548.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [4]E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, J. Math. Phys. 32 (1991) 1155.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [5]E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, J. Math. Phys. 32 (1991) 1159.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [6]E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, “Contractions of quantum groups”, Proceedings of the first semester on quantum groups, Eds. L.D. Faddeev and P.P. Kulish, Leningrad October 1990, Springer-Verlag, in press.Google Scholar
- [7]E. Celeghini, R. Giachetti, P. Kulish, E. Sorace and M. Tarlini, J.Physics A:Math. Gen. 24 (1991) 5675.MathSciNetADSzbMATHCrossRefGoogle Scholar
- [8]J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoy, Phys. Lett B 264, 331 (1991).MathSciNetADSCrossRefGoogle Scholar
- [9]J. Lukierski, A. Nowicki, H. Ruegg, “Quantum deformationa of D = 4 Poincaré and conformal algebras, Preprint.Google Scholar
- [10]J. Lukierski, A. Nowicki, “Real forma of Uq(OSp(1 2)) and quantum D = 2 Superaymmetry algebras, Preprint, June 1991 ITP UWr 777/91Google Scholar
- [11]R. Gilmore, “Lie groupa, Lie algebraa and aome of their applicationa” (New York, N.Y., 1974, Wiley).Google Scholar
- [12]E. Celeghini and M. Tarlini, Nuovo Cim. B61 (1981) 265, B65 (1981) 172 and B68 (1982) 133.MathSciNetADSCrossRefGoogle Scholar
- [13]S.M. Khoroskin and V.N. Tolstoy, “Universal R-Matriz for Quantized (Super)Algebras, Preprint, Moscow 1991.Google Scholar
- [14]Faddeev L., Reshetikhin N.Yu. and Takhtajan L., Algebra i Analiz, 1, (1989),178Google Scholar
- [15]P.P. Kulish, N.Yu. Reshetikhin, Lett. Math. Phys. 18.Google Scholar
- [16]L.L. Vaksman and L.I. Korogodskii, Soviet Math. Dokl. 39 (1989) 173.MathSciNetzbMATHGoogle Scholar
- [17]F. Bonechi, E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, “Inhomogeneoua Quantum Groups as Symmetry of Phonons.”, University of Florence Preprint, DFF 152/12/91Google Scholar
- [18]S.L. Woronowicz private communication. S.L.Woronowicz “Quantum SU(2) and E(2) groups. Contraction procedure”, Preprint, Lyon I, December 7, 1991.Google Scholar
- [19]E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, Quantum gro’ltpa of motion and rotational spectra of heavy nuclei, Preprint DFF 151/11/91 Firenze, to be published in Phys.Lett. B.Google Scholar
- [20]D. Bonatsos, E.N. Argyres, S.B. Drenska, P.P. Raychev, R.P. Roussev and Yu.F. Smirnov, Phys. Lett. B 251, 477 (1990).MathSciNetADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 1992