Advertisement

Quantum Deformations of D = 4 Poincaré Algebra

  • Jerzy Lukierski
  • Anatol Nowicki
Chapter
  • 172 Downloads
Part of the Mathematical Physics Studies book series (MPST, volume 13)

Abstract

Recently the formalism of quantum groups and quantum algebras has been applied to the description of quantum deformations of D = 4 Lorentz group and D = 4 Lorentz algebra [1-5]. In order to obtain the quantum deformation of semisimple Lie algebras describing Minkowski or Euclidean group of motions mostly the contraction techniques have been used. In particular there were obtained:
  1. a)

    quantum deformation of D = 2 and D = 3 Euclidean and Minkowski geometries, described as quantum Lie algebra or quantum Lie group [6,7].

     
  2. b)

    quantum deformation of D = 4 Poincare algebra [8,9].

     
  3. c)

    quantum deformations of D = 4 conformal algebra [10,11].

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Podleś and S.L. Woronowicz, Comm. Math. Phys. 130, (1990)381MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    V. Carow-Watamura, M. Schlieker, M. Scholl and S. Watamura, Z. Phys.C48, (1990)159MathSciNetGoogle Scholar
  3. [3]
    V. Carow-Watamura, M. Schlieker, M. Scholl and S. Watamura, Int. Journ. Mod. Phys. 6A, (1991)3081MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S.L. Woronowicz, “New Quantum Deformation of SL(2;C)-Hopf Algebra Level”, Warsaw University preprint, 1990Google Scholar
  5. [5]
    W.P. Schmidke, J. Wess and B. Zumino, Max Planck Institute preprint MPI-Ph/91–15, March 1991Google Scholar
  6. [6]
    E. Celeghini, R. Giacchetti, E. Sorace and M. Tarlini, J. Math. Phys. 32, (1991)1155; ibid. 1159MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    E. Celeghini, R. Giacchetti, E. Sorace and M. Tarlini, “Contractions of quantum groups”, Proceedings of First EIMI Workshop on Quantum Groups, Leningrad, October-December 1990, ed. P. Kulish, Springer Verlag, 1991Google Scholar
  8. [8]
    J. Lukierski, A. Nowicki, H. Ruegg and V.N. Tolstoy. Phys. Lett.264B, 331(1991)MathSciNetADSGoogle Scholar
  9. [9]
    J. Lukierski, A. Nowicki and H. Ruegg, Phys. Lett.271B, 321(1991)MathSciNetADSGoogle Scholar
  10. [10]
    V. Dobrev, “Canonical q-Deformations of Noncompact Lie (Super-) Algebras”, Gottingen Univ. preprint, July 1991Google Scholar
  11. [11]
    J. Lukierski, A. Nowicki,“Quantum Deformations of D=4 Poincaré and Weyl Algebra from q-Deformed D=4 Conformal Algebra”, Wroclaw University preprint ITP UWr 787/91, October 1991Google Scholar
  12. [12]
    M. Rosso, Comm. Math. Phys. 124, (1989)307MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    S.M. Khoroshkin and V.N. Tolstoy, Comm. Math. Phys. 141, 599 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Jerzy Lukierski
    • 1
  • Anatol Nowicki
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of WroclawWroclawPoland
  2. 2.Laboratoire de Physique ThéoriqueUniversité de Bordeaux IGradignanFrance

Personalised recommendations