Skip to main content

The Possible Role of Glycation in the Pathogenesis of Atherosclerosis

  • Chapter
  • 67 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 125))

Abstract

Hyperglycaemia is the hallmark of diabetes mellitus. Indeed, it is by measurement of the blood glucose that we diagnose and define the condition [1, 2]. In practice, raised blood glucose is the biochemical abberation in diabetes which, either by modification of diet or administration of oral hypoglycaemic drugs or insulin injection, is most responsive to therapeutic intervention. Because of the constancy of hyperglycaemia as a finding in untreated diabetes it is natural to speculate that excessive levels of glucose are in some way responsible for any or all of the ills which may subsequently befall diabetic patients. Our ability to manipulate the blood glucose towards normal adds attractiveness to this hypothesis, as both the patient and the attending physician will be encouraged to believe that their successful therapeutic endeavours, easily demonstrated by simple blood tests, will yield handsome long-term dividends. And our realization that it is almost impossible, in the majority of patients, to achieve complete normalization of the blood glucose provides the rationale (and intellectual consolation to the physician at least) when our best efforts fail to prevent the relentless onslaught of vascular complications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keen H, Jarrett RJ, Alberti KGMM (1979) Diabetes mellitus: A new look at diagnostic criteria. Diabetologia 16:283–5

    PubMed  CAS  Google Scholar 

  2. National diabetes Data Group (1979) Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28:1039–57

    Google Scholar 

  3. Maillard LC (1912) Action des acides amines sur les sucres: formation des melanoidines par voie methodique. CR Seances Acad Sci [III] 154:66–8

    CAS  Google Scholar 

  4. Allen DW, Schroeder WA, Balog J (1958) Observations on the chromatographic heterogeneity of normal adult and fetal hemoglobin. J Am Chem Soc 80:1628–34

    CAS  Google Scholar 

  5. Rahbar S (1968) An abnormal hemoglobin in red cells of diabetes. Clin Chem Acta 22:296–8

    CAS  Google Scholar 

  6. Rahbar S, Blumenfeld O, Ranney HM (1969) Studies on an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun 36:838–43

    PubMed  CAS  Google Scholar 

  7. Trivelli LA, Ranney HM, Lai H-T (1971) Hemoglobin components in patients with diabetes mellitus. N Engl J Med 284:353–7

    PubMed  CAS  Google Scholar 

  8. Fluckiger R, Winterhalter KH (1976) In vitro synthesis of haemoglobin A1c. FEBS Lett 71:356–60

    PubMed  CAS  Google Scholar 

  9. Bookchin RM, Gallop PM (1968) Structure of hemoglobin A1c: nature of the N-terminal chain blocking group. Biochem Biophys Res Commun 32:86–93

    PubMed  CAS  Google Scholar 

  10. Bunn HF, Haney DN, Gabbay KH et al (1975) Further identification of the nature of linkage of the carbohydrate in hemoglobin A1c. Biochem Biophys Res Commun 67:103–9

    PubMed  CAS  Google Scholar 

  11. Koenig RJ, Petersen CM, Jones RL, Saudek C, Lehrman M, Cerami A (1976) Correlation of glucose regulation and hemoglobin A1c in diabetes mellitus. N Engl J Med 295:417–20

    PubMed  CAS  Google Scholar 

  12. Kennedy L, Baynes JW (1984) Nonenzymatic glycosylation and the chronic complications of diabetes: an overview. Diabetologia 26:93–8

    PubMed  CAS  Google Scholar 

  13. Brownlee M, Vlassara H, Cerami A (1984) Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 101:527–37

    PubMed  CAS  Google Scholar 

  14. Brownlee M, Cermai A, Vlassara H (1988) Advanced glycosylation end-products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–21

    PubMed  CAS  Google Scholar 

  15. Schleicher E, Deufel T, Wieland OH (1981) Nonenzymatic glycosylated low-density lipoprotein in diabetic patients. FEBS Lett 129:1–4

    PubMed  CAS  Google Scholar 

  16. Lyons TJ, Baynes JW, Patrick JS, Colwell JA, Lopes-Virella MF (1986) Glycosylation of low-density lipoprotein in patients with Type 1 (insulin-dependent) diabetes: correlations with other parameters of glycaemic control. Diabetologia 29:685–9

    PubMed  CAS  Google Scholar 

  17. Jack CM, Sheridan B, Kennedy L, Stout RW (1988) Non-enzymatic glycosylation of low-density lipoprotein. Results of an affinity chromatography method. Diabetologia 31:126–7

    PubMed  CAS  Google Scholar 

  18. Curtiss LK, Witztum JL (1983) A novel method for generating region-specific monoclonal antibodies to modified proteins: Application to the identification of human glycosylated low-density lipoproteins. J Clin Invest 72:1427–38

    PubMed  CAS  Google Scholar 

  19. Curtiss LK, Witzum JL (1985) Plasma apolipoproteins A1, A11, B, C1 and E are glucosylated in hyperglycemic diabetic subjects. Diabetes 34:452–61

    PubMed  CAS  Google Scholar 

  20. Vlassara H, Brownlee M, Cerami A (1985) High-affinity receptor-mediated uptake and degradation of glucose modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc Natl Acad Sci USA 82:5588–92

    PubMed  CAS  Google Scholar 

  21. Ney KA, Pasqua JJ, Colley KJ, Guthrow CE, Pizzo SV (1985) In vitro preparation of non-enzymatically glucosylated human transferrin, α2 and fibrinogen with preservation of function. Diabetes 34:462–70

    PubMed  CAS  Google Scholar 

  22. Lutjens A, teVelde AA, v.d. Veen EA et al (1985) Glycosylation of human fibrinogen in vivo. Diabetologia 28:87–9

    PubMed  CAS  Google Scholar 

  23. Brownlee M, Vlassara H, Cerami A (1983) Nonenzymatic glycosylation reduces the susceptibility of fibrin to degradation by plasmin. Diabetes 32:680–4

    PubMed  CAS  Google Scholar 

  24. Brownlee M, Vlassara H, Cerami A (1984) Inhibition of heparin-catalyzed human antithrombin III activity by nonenzymatic glycosylation. Diabetes 33:532–5

    PubMed  CAS  Google Scholar 

  25. Cohen MP (1986) Pathophysiologic significance. In: Cohen MP (ed) Diabetes and protein glycosylation; measurement and biologic relevance pp. 67–111 New York: Springer-Verlag

    Google Scholar 

  26. Kent MJC, Light ND, Bailey AJ (1985) Evidence for glucose-mediated covalent cross-linking of collagen after glycosylation in vitro. Biochem J 225:745–52

    PubMed  CAS  Google Scholar 

  27. Schnider SL, Kohn RR (1981) The effects of age and diabetes mellitus on the solubility and non-enzymatic glucosylation of human skin collagen. J Clin Invest 67:1630–5

    PubMed  CAS  Google Scholar 

  28. Yue DK, McLennan S, Delbridge L, Handelsman DJ, Reeve T, Turtle JR (1983) The thermal stability of collagen in diabetic rats: correlation with severity of diabetes and nonenzymatic glycosylation. Diabetologia 24:282–5

    PubMed  CAS  Google Scholar 

  29. Lyons TJ, Kennedy L (1985) Non-enzymatic glycosylation of skin collagen in patients with Type 1 (insulin-dependent) diabetes mellitus and limited joint mobility. Diabetologia 28:2–5

    PubMed  CAS  Google Scholar 

  30. Kohn RR, Cerami A, Monnier VM (1984) Collagen aging in vitro by non-enzymatic glycosylation and browning. Diabetes 33:57–9

    PubMed  CAS  Google Scholar 

  31. Monnier VM, Vishwanath V, Frank KE, Elmets CA, Dauchot P, Kohn R (1986) Relation between complications of Type 1 diabetes mellitus and collagen-linked fluorescence. N Engl J Med 314:403–8

    PubMed  CAS  Google Scholar 

  32. Vlassara H, Brownlee M, Cerami A (1981) Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci USA 78:5190–2

    PubMed  CAS  Google Scholar 

  33. Vogt BW, Schleicher ED, Wieland OH (1982) ε-amino-lysine-bound glucose in human tissues obtained at autopsy: Increase in diabetes mellitus. Diabetes 31:1123–7

    PubMed  CAS  Google Scholar 

  34. Vlassara H, Brownlee M, Cerami A (1984) Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation end-products. J Exp Med 160:197–207

    PubMed  CAS  Google Scholar 

  35. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    PubMed  CAS  Google Scholar 

  36. Witztum JL, Mahoney EM, Branks MJ, Fisher M, Elam R, Steinberg D (1982) Nonenzymatic glucosylation of low-density lipoprotein alters its biological activity. Diabetes 31:283–91

    PubMed  CAS  Google Scholar 

  37. Steinbrecher UP, Witzum JL (1984) Glucosylation of low density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes 33:130–4

    PubMed  CAS  Google Scholar 

  38. Wiklund O, Witztum JL, Carew TE, Pittman RC, Elam RL, Steinberg D (1987) Turnover and tissue sites of degradation of glucosylated low density lipoprotein in normal and immunized rabbits. J Lipid Res 28:1098–1109

    PubMed  CAS  Google Scholar 

  39. Lopes-Virella MF, Sherer GK, Lees AM et al (1982) Surface binding, internalization and degradation by cultured human fibroblasts of low density lipoproteins isolated from type 1 (insulin-dependent) diabetic patients: Changes with metabolic control. Diabetologia 22:430–6

    PubMed  CAS  Google Scholar 

  40. Lyons TJ, Klein RL, Baynes JW, Stevenson HC, Lopes-Virella MF (1987) Stimulation of cholesteryl ester synthesis in human monocyte-derived macrophages by low-density lipoproteins from Type 1 (Insulin-dependent) diabetic patients: the influence of non-enzymatic glycosylation of low-density lipoproteins. Diabetologia 30:916–23

    PubMed  CAS  Google Scholar 

  41. Lopes-Virella MF, Klein RL, Lyons TJ, Stevenson HC, Witztum JL (1988) Glucosylation of low density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes 37:550–7

    PubMed  CAS  Google Scholar 

  42. Witzum JL, Koshchinsky T (1989) Metabolic and immunological consequences of glycation of low density lipoproteins. In: Baynes JW, Monier VM (eds) The Maillard reaction in aging, diabetes and nutrition pp 219–34 New York: Alan R Liss Inc

    Google Scholar 

  43. Koschinsky T, Lai D, Vlassara H, Brownlee M, Witztum JL (1988) Immunogenicity of advanced glucosylation endproducts (AGE) in guinea pigs and man. Diabetes 37:784 (abstract)

    Google Scholar 

  44. Parums D, Mitchinson MJ (1981) Demonstration of immunoglobulin in the neighborhood of advanced atherosclerotic plaques. Atherosclerosis 38:211–6

    PubMed  CAS  Google Scholar 

  45. Vlassara H, Brownlee M, Cerami A (1989) Macrophage receptor-mediated processing and regulation of advanced glycosylation endproduct (AGE)-modified proteins: role in diabetes and aging. In: Baynes JW, Monnier VM (eds) The Maillard reaction in aging, diabetes and nutrition pp 205–18 New York: Alan R Liss Inc

    Google Scholar 

  46. Vlassara H, Brownlee M, Cerami A (1988) Specific macrophage receptor activity for advanced glycosylation end products inversely correlates with insulin levels in vivo. Diabetes 37:456–61

    PubMed  CAS  Google Scholar 

  47. Lyons JT, Kennedy L (1985) Effect of in vitro nonenzymatic glycosylation of human skin collagen on susceptibility to collagenase digestion. Eur J Clin Invest 15:128–31

    PubMed  CAS  Google Scholar 

  48. Andreassen TT, Seyer-Hansen K, Bailey AJ (1981) Changes in thermal isometric tension, reducible cross-links and mechanical properties of rat tail tendon induced by experimental diabetes. Biochem Biophys Acta 677:313–7

    PubMed  CAS  Google Scholar 

  49. Kent MJC, Light ND, Bailey AJ (1985) Evidence for glucose-mediated covalent crosslinking of collagen after glycosylation in vitro. Biochem J 225:745–52

    PubMed  CAS  Google Scholar 

  50. Bailey AJ, Kent MJC (1989) Non-enzymatic glycosylation of fibrous and basement membrane collagens. In: Baynes JW, Monnier VM (eds) The Maillard reaction in aging, diabetes and nutrition pp 109–22 New York: Alan R Liss Inc

    Google Scholar 

  51. Pongor S, Ulrich PC, Bencsath FA, Cerami A (1984) Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci USE 81:2684–8

    CAS  Google Scholar 

  52. Chang JCG, Ulrich PC, Bucala R, Cerami A (1985) Detection of an advanced glycosylation product bound to protein in situ. J Biol Chem 260:7970–4

    PubMed  CAS  Google Scholar 

  53. Njoroge FG, Sayre LM, Monnier VM (1987) Detection of D-glucose-derived pyrrole compounds during Maillard reaction under physiological conditions. Carbohydrate Res 167:211–20

    CAS  Google Scholar 

  54. Sell DR, Monnier VM (1989) Structure elucidation of a senescene cross-link from human extracellular matrix. J Biol Chem 264:21597–602

    PubMed  CAS  Google Scholar 

  55. Sell DR, Monnier VM (1990) End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest 85:380–4

    PubMed  CAS  Google Scholar 

  56. Brownlee M, Vlassara H, Cerami A (1987) Aminoguaidine prevents hyperglycemia-induced defect in binding of heparin by matrix molecules. Diabetes 36:85A

    Google Scholar 

  57. Brownlee M, Vlassara H, Kooney T, Ulrich P, Cerami A (1986) Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 232:1629–32

    PubMed  CAS  Google Scholar 

  58. Srivastava SK, Ansari NH, Hair GA, Jaspan J, Rao MB, Das B (1986) Hyperglycemia induced activation of human erythrocyte aldose reductase and alteration in kinetic properties. Biochem Biophys Acta 870:302–11

    PubMed  CAS  Google Scholar 

  59. Bunn HF, Higgins PJ (1981) Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213:222–4

    PubMed  CAS  Google Scholar 

  60. Suarez G, Rajaram R, Bhuyan KC, Oronsky AL, Goidl JA (1988) Administration of an aldose reductase inhibitor induces a decrease of collagen fluorescene in diabetic rats. J Clin Invest 82:624–7

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kennedy, L. (1992). The Possible Role of Glycation in the Pathogenesis of Atherosclerosis. In: Stout, R.W. (eds) Diabetes and Atherosclerosis. Developments in Cardiovascular Medicine, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2734-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2734-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5212-2

  • Online ISBN: 978-94-011-2734-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics