Skip to main content

Crystal Chemistry of Complex Sulfides (Sulfosalts) and its Chemical Application

  • Chapter
Modern Perspectives in Inorganic Crystal Chemistry

Part of the book series: NATO ASI Series ((ASIC,volume 382))

Abstract

Crystal structures of many complex sulfides can be obtained by recombination of fragments of archetypal structures by the action of various structure-building operators. Chemical categories, coordination polyhedra, archetypes and recombination operators for these structures are described in the paper. These structures often occur as members of accretional or variable-fit homologous series or as homologous pairs of various kinds. Three case studies supplemented by exercises are described in some detail: the lillianite homologous series, the misfit layer structures and those structures that represent combination of the accretional and variable-fit principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, S. & Hyde, B. G. (1974). ‘Twinning on the unit cell level as a structure-building operation in the solid state’, J. Solid State Chem. 9, 92–101.

    Article  CAS  Google Scholar 

  • Bakker, M. & Hyde, B. G. (1978). ‘A preliminary electron microscope study of chemical twinning in the system MnS + Y2S3, an anlogue of the mineral system PbS + Bi2S3 (galena + bismuthinite),’ Phil. Magazine, A38, 615–628.

    Google Scholar 

  • Bovin, J. O. & Andersson, S. (1977). ’swinging twinning on the unit cell level as a structure-building operation in the solid state’, J. Solid State Chem. 20, 127–133.

    Article  CAS  Google Scholar 

  • Carré, D. & Laruelle, P. (1973). ’structure cristalline du sulfure d’erbium et de lanthane, Er9La10S27,’ Acta Cryst. 829, 70–73.

    Google Scholar 

  • Engel, P. & Nowacki, W. (1969). ‘Kristallstruktur von Baumhauerit’, Z. Kristallogr. 129, 178–202.

    Article  CAS  Google Scholar 

  • Euler, R. & Hellner, E. (1960). ‘Über komplex zusammengesetzte sulfidische Erze VI. Zur Kristallstruktur des Meneghinits, CuPb13Sb7S24,’ Z. Kristallogr. 113, 345–372.

    Article  CAS  Google Scholar 

  • Harris, D. C. & Chen, T. T. (1975). ‘Gustavite-two Canadian occurrences’, Can. Mineral. 13, 411–414.

    Google Scholar 

  • Hyde, B. G., Bagshaw, A. N., Andersson, S. & O’Keeffe, M. O. (1974). ’some defect structures in crystalline solids’, Ann. Rev. Mat. Sci. 4, 43–92.

    Article  CAS  Google Scholar 

  • Hyde, B. G., Andersson, S., Bakker, M., Plug, C. M. & O’Keeffe, M. (1979). ‘The (twin) composition plane as an extended defect and structure-building entity in crystals’, Progr. Solid State Chem. 12, 273–327.

    Article  CAS  Google Scholar 

  • Iitaka, Y. & Nowacki, W. (1961). ‘Refinement of the pseudo crystal structure of scleroclase, PbAs2S4’, Acta Cryst. 14, 1291–1292.

    Article  CAS  Google Scholar 

  • Iitaka, Y. & Nowacki, W. (1962). ‘A redetermination of the crystal structure of galenobismutite, PbBi2S4’, Acta Cryst. 15, 691–698.

    Article  Google Scholar 

  • Kohatsu, I. & Wuensch, B. J. (1971). ‘The crystal structure of aikinite, PbCuBiS3’. Acta Cryst. 827, 1245–1252.

    Google Scholar 

  • Krämer, V. & Reis, I. (1986). ‘Lead indium bismuth chalcogenides. II. Structure of Pb4ln3Bi7S18’, Acta Cryst. C42, 249–251.

    Google Scholar 

  • Kupčík, V. & Wendshuh, M. (1982). ‘The structure of antimony bismuth tin sulphide BiXSb2-XSn2S5’, Acta Cryst. 838, 3070–3071.

    Google Scholar 

  • Kupčík, V. & Steins, M. (1991). ‘Verfeinerung der Kristallstruktur von Gustavit (Pb1.5Ag0.9Bi2.5Sb0.1S6)’ Berichte Deutsch. Mineral. Gesellschaft 1990/2, 151.

    Google Scholar 

  • Lima de Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthe, E. (1990). ‘Nomenclature of inorganic structure types’. Report of the IUCr Commission on Crystallographic Nomenclature, Subcommittee on the Nomenclature of Inorganic Structure Types. Acta Cryst. A46, 1–11.

    Google Scholar 

  • Makovicky, E. (1974). ‘Mineralogical data on cylindrite and incaite’, N. Jahrb. Mineral. Abh. 126, 304–326.

    Google Scholar 

  • Makovicky, E. (1981). ‘The building principles and classification of bismuth-lead sulphosalts and related compounds’, Fortschr. Mineral. 59, 137–190.

    CAS  Google Scholar 

  • Makovicky, E. (1985). ‘The building principles and classification of sulphosalts based on the SnS archetype’, Fortschr. Mineral. 63, 45–89.

    CAS  Google Scholar 

  • Makovicky, E. (1989). ‘Modular classification of sulphosalts-current status. Definition and application of homologous series’, N. Jahrb. Miner. Abh. 160, 269–297.

    CAS  Google Scholar 

  • Makovicky, E. & Hyde, B. G. (1981). ‘Non-commensurate (misfit) layer structures’, Structure & Bonding 46, 101–170.

    Article  CAS  Google Scholar 

  • Makovicky, E. & Hyde, B. G. (1992). ‘Incommensurate, two-layer structures with complex crystal chemistry: minerals and related synthetics’. In “Incommensurate Misfit Sandwiched Layered Compounds”, ed. Meerschaut, A., Trans.Tech Publ. Ltd., in press.

    Google Scholar 

  • Makovicky E. & Karup-Møller, S. (1977). ‘Chemistry and crystallography of the lillianite homologous series. I. General properties and definitions’, N. Jahrb. Miner. Abh. 130, 264–287.

    CAS  Google Scholar 

  • Makovicky, E. & Mumme, W. G. (1983) ‘The crystal structure of ramdohrite, Pb6Sb11Ag3S24 and its implications forthe andorite group and zinckenite’, N. Jahrb. Mineral. Abh. 147, 58–79.

    CAS  Google Scholar 

  • Makovicky, E., Mumme, W. G. & Watts, J. A. (1977). ‘The crystal structure of synthetic pavonite, AgBi3S5 and the definition of the pavonite homologous series’, Can. Mineral. 15, 339–348.

    Google Scholar 

  • Makovicky, E., Mumme, W. G. & Madsen, I.C. (1993). ‘The crystal structure of vikingite’, N. Jahrb. Mineral. Abh., in press.

    Google Scholar 

  • Makovicky, E. & Mumme, W. G. (1979). ‘The crystal structure of benjaminite Cu0.50Pb0.40Ag2.30Bi6.80S12’, Can. Mineral. 17, 607–618.

    CAS  Google Scholar 

  • Marumo, F. & Nowacki, W. (1965). ‘The crystal structure of rathite-I’, Z. Kristallogr. 122, 433–456.

    Article  CAS  Google Scholar 

  • Matzat, E. (1979). ‘Cannizzarite’, Acta Cryst. B35, 133–136.

    CAS  Google Scholar 

  • Moëlo, Y., Makovicky, E. & Karup-Møller, S. (1988). ’sulfures complexes plombo-argentiferes: Minéralogie et cristallochimie de la série andorite-fizelyite (Pb,Mn,Fe,Cd,Sn)3-2X(Ag,Cu)X(Sb,Bi,As)2+X(S,Se)6’, Documents BRGM (Orléans) 167, 107 pp.

    Google Scholar 

  • Mumme, W. G. (1975). ‘Junoite, Cu2Pb3Bi8(S,Se)16’ a new sulfosalt from Tennant Creek, Australia: Its crystal structure, and relationship with other bismuth sulfosalts.’ Amer. Mineral. 60, 548–558.

    CAS  Google Scholar 

  • Mumme, W. G. (1980). ‘Weibullite, Ag0.32Pb5.02Bi8.55Se6.08S11.92 from Falun, Sweden. A higher homologue of galenobismutite’. Can. Mineral. 18, 1–18.

    CAS  Google Scholar 

  • Niizeki, W. & Buerger, M. J. (1957). ‘The crystal structure of jamesonite, FePb4Sb6S14’, Z. Kristallogr. 109, 161–183.

    Article  CAS  Google Scholar 

  • Ohmasa, M. & Nowacki, W. (1973). ‘A redetermination of the crystal structure of aikinite [BiS2 | S | CuIVPbVIII]’, Z. Kristallogr. 137, 422–432.

    Article  CAS  Google Scholar 

  • Otto, H. H. & Strunz, H. (1968). ‘Zur Kristallchemie synthetischer Blei-WismutSpiessglanze’, N. Jahrb. Mineral. Abh. 108, 1–19.

    CAS  Google Scholar 

  • Srikrishnan, T. & Nowacki, W. (1974). ‘A redetermination of the crystal structure of cosalite, Pb2Bi2S5’, Z. Kristallogr. 140, 114–136.

    Article  CAS  Google Scholar 

  • Skowron, A. & Tilley, R. J. D. (1990). ‘Chemically twinned phases in the Ag2S-PbS-Bi2S3 system. Part 1. Electron microscope study’. J. Solid State Chemistry 85, 235–250.

    Article  CAS  Google Scholar 

  • Takagi, J. & Takeuchi, Y. (1972). ‘The crystal structure of lillianite’, Acta Cryst. B28, 649–651.

    Google Scholar 

  • Takeuchi, Y. (1978). ‘Tropochemical twinning: A mechanism of building complex structures’, Recent Progress Nat. Sci. Japan 3, 153–181.

    CAS  Google Scholar 

  • Thompson, J. B., Jr. (1978). ‘Biopyriboles and polysomatic series’, Am. Mineral. 58, 239–249.

    Google Scholar 

  • Veblen, D. R. (1991). ‘Polysomatism and polysomatic series: A review and applications’, Amer. Mineral. 76, 801–826.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Makovicky, E. (1992). Crystal Chemistry of Complex Sulfides (Sulfosalts) and its Chemical Application. In: Parthé, E. (eds) Modern Perspectives in Inorganic Crystal Chemistry. NATO ASI Series, vol 382. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2726-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2726-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5209-2

  • Online ISBN: 978-94-011-2726-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics