Skip to main content

The flux of CO2 and CH4 from lakes and rivers in arctic Alaska

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 78))

Abstract

Partial pressures of CO2 and CH4 were measured directly or calculated from pH and alkalinity or DIC measurements for 25 lakes and 4 rivers on the North Slope of Alaska. Nearly all waters were supersaturated with respect to atmospheric pressures of CO2 and CH4. Gas fluxes to the atmosphere ranged from -6.5 to 59.8 mmol m - 2 d - 1 for CO2 and from 0.08 to 1.02 mmol m - 2 d - 1 for CH4, and were uncorrelated with latitude or lake morphology. Seasonal trends include a buildup of CO2 and CH4 under ice during winter, and often an increased CO2 flux rate in August due to partial lake turnover. Nutrient fertilization experiments resulted in decreased CO2 release from a lake due to photosynthetic uptake, but no change in CO2 release from a river due to the much faster water renewal time. In lakes and rivers the groundwater input of dissolved CO2 and CH4 is supplemented by in-lake respiration of dissolved and particulate carbon washed in from land. The release of carbon from aquatic systems to the atmosphere averaged 24 g C m - 2 Y - 1, and in coastal areas where up to 50 % of the surface area is water, this loss equals 1/5 to 1/2 of the net carbon accumulation rates estimated for tundra.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson, P. H., 1989. The Arctic: A key to world climate. Science 243: 873.

    Google Scholar 

  • Billings, W. D., 1987. Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quat. Sci. Rev. 6: 165–177.

    Google Scholar 

  • Billings, W. D., J. O. Luken, D. A. Mortensen & K. M. Peterson, 1982. Arctic tundra: A source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53: 7–11.

    Google Scholar 

  • Billings, W. D., K. M. Peterson, J. O. Luken & D. A. Mortensen, 1984. Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65: 26–29.

    Google Scholar 

  • Bliss, L. C., O. W. Heal & J. J. Moore, 1981. Tundra ecosystems: A comparative analysis. IBP Handbook 25. Cambridge University Press, Cambridge, 715 pp.

    Google Scholar 

  • Bolin, B., B. R. Doos, J. Jager & R. A. Warrick, 1986. The greenhouse effect, climate change, and ecosystems. SCOPE 29. John Wiley & Sons, New York, 541 pp.

    Google Scholar 

  • Bower, P. & D. McCorkle, 1980. Gas exchange, photosynthetic uptake, and carbon budget for a radiocarbon addition to a small enclosure in a stratified lake. Can. J. Fish. aquat. Sci. 37: 464–471.

    Google Scholar 

  • Broecker, H. C., J. Peterman & W. Siems, 1978. The influence of wind on CO2-exchange in a wind-wave tunnel, includingthe effects of mono layers. J. Mar. Res. 36: 595–610.

    Google Scholar 

  • Broecker, W. S. & T.-H. Peng, 1974. Gas exchange rates between air and sea. Tellus 16: 21–35.

    Google Scholar 

  • Broecker, W. S., T.-H. Peng, G. Mathieu, R. Heslein & T. Torgersen, 1980. Gas exchange rate measurements in natural systems. Radiocarbon 22: 676–683.

    Google Scholar 

  • Buck, A. L., 1981. New equations for computing vapor pressure and enhancement factor. J. appl. Meteorol. 20: 1527–1532.

    Google Scholar 

  • Chapin, F. S., III, P. C. Miller, W. D. Billings & P. I. Coyne, 1980. Carbon and nutrient budgets and their control in coastal tundra. In J. Brown, P. C. Miller, L. L. Tieszen & F. K. Bunnell (eds), An Arctic Ecosystem, the Coastal Tundra at Barrow, Alaska. IBP Handbook 12. Dowden, Hutchinson & Ross, Inc., Stroudsburg: 458–482.

    Google Scholar 

  • Cornwell, J. C., 1985. Sediment accumulation rates in an Alaskan arctic lake using a modified 210Pb technique. Can. J. Fish. aquat. Sci. 42: 809–814.

    Google Scholar 

  • Cornwell, J. C. & G. W. Kipphut, 1992. Biogeochemistry of manganese-and iron-rich sediments in Toolik Lake, Alaska. Hydrobiologia 240: 45–59.

    Google Scholar 

  • Coyne, P. I. & J. J. Kelley, 1974. Carbon dioxide partial pressures in arctic surface waters. Limnol. Oceanogr. 19: 928–938.

    Google Scholar 

  • Coyne, P. I. & J. J. Kelley, 1975. CO2 exchange over the Alaskan arctic tundra: meteorological assessment by an aerodynamic method. J. appl. Ecol. 12: 587–611.

    Google Scholar 

  • Emerson, S., 1975a. Chemically enhanced CO2 gas exchange in a eutrophic lake: A general model. Limnol. Oceanogr. 20: 743–753.

    Google Scholar 

  • Emerson, S., 1975b. Gas exchange rates in small Canadian shield lakes. Limnol. Oceanogr. 20: 754–761.

    Google Scholar 

  • Grotch, S. L., 1988. Regional intercomparison of general circulation model predictions and historical climate data.DOE/NBB-0084 TR041. U.S. Department of Energy. Washington. 291 pp.

    Google Scholar 

  • Hartman, B. & D. E. Hammond, 1984. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay. J. Geophys. Res. 89: 3593–3603.

    Google Scholar 

  • Heal, O. W., P. W. Flanagan, D. D. French & S. F. MacLean, Jr., 1981. Decomposition and accumulation of organic matter in tundra. In L. C. Bliss, O. W. Heal & J. J. Moore (eds), Tundra Ecosystems: A Comparative Analysis. IBP Handbook 25. Cambridge University Press, Cambridge: 587–633.

    Google Scholar 

  • Herczeg, A. L., 1987. A stable carbon isotope study of dissolved inorganic carbon cycling in a softwater lake. Biogeochemistry 4: 231–263.

    Google Scholar 

  • Hesslein, R. H., W. S. Broecker, P. D. Quay & D. W. Schindler, 1980. Whole-lake radiocarbon experiment in an oligotrophic lake at the Experimental Lakes Area, Northwestern Ontario. Can. J. Fish. aquat. Sci. 37: 454–463.

    Google Scholar 

  • Hobbie, J. E., 1980. Limnology of tundra ponds.IBP Handbook 13. Dowden, Hutchinson & Ross, Inc., Stroudsburg, 514 pp.

    Google Scholar 

  • Hoover, T. E. & P. C. Berkshire, 1969. Effects of hydration on carbon dioxide exchange across air-water interface. J. Geophys. Res. 74: 456–474.

    Google Scholar 

  • Himmelblau, D. M., 1964. Diffusion of dissolved gases in liquids. Chem. Rev. 64: 527–550.

    Google Scholar 

  • Jähue, B., K. H. Fischer, J. Imberger, P. Libner, W. Weiss, D. Imboden, U. Lemnin & J. M. Jaquet, 1984. Parametrization of air/lake gas exchange. In W. Brutsaert and G. H. Jirka (eds), Gas Transfer at Water Surfaces. D. Reidel, Dordrecht: 459–466.

    Google Scholar 

  • Kalff, J. & H. E. Welch, 1974. Phytoplankton production in Char Lake, a natural polar lake, and in Meretta Lake, a polluted polar lake, Cornwallis Island, Northwest Territories. J. Fish. Res. Bd Can. 31: 621–636.

    Google Scholar 

  • Kanwisher, J., 1963. On the exchange of gases between the atmosphere and the sea. Deep-Sea Res. 10: 195–207.

    Google Scholar 

  • Kling, G. W., G. W. Kipphut & M. C. Miller, 1991. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251: 298–301.

    Google Scholar 

  • Kling, G. W., W. J. O’Brien, M. C. Miller & A. E. Hershey, 1992. The biogeochemistry and zoogeography of lakes and rivers in arctic Alaska. Hydrobiologia 240: 1–14.

    Google Scholar 

  • Lachenbruch, A. H. & B. V. Marshall, 1986. Changing climate: Geothermal evidence from permafrost in the Alaskan arctic. Science 234: 689–696.

    Google Scholar 

  • Liss, P. S., 1973. Process of gas exchange across an air-water interface. Deep-Sea Res. 20: 221–238.

    Google Scholar 

  • Livingston, G. P. & L. A. Morrissey, 1990. An interannual comparison of arctic methane emissions: a climatic warming scenario. p. 105 In International Conference on the Role of the Polar Regions in Global Change, June 11-15, 1990, University of Alaska, Fairbanks. 230 pp.

    Google Scholar 

  • Livingstone, D. A., K. Bryan, Jr. & R. C. Leahy, 1958. Effects of an arctic environment on the origin and development of freshwater lakes. Limnol. Oceanogr. 3: 192–214.

    Google Scholar 

  • Merlivat, L. & L. Memery, 1983. Gas exchange across an air-water interface: Experimental results and modeling of bubble contribution to transfer. J. Geophys. Res. 88: 707–724.

    Google Scholar 

  • Miller, M. C., G. R. Hater, P. Spatt, P. Westlake & D. Yeakel, 1986. Primary production and its control in Toolik Lake, Alaska. Arch. Hydrobiol. Suppl. 74: 97–131.

    Google Scholar 

  • Nadelhoffer, K. J., A. E. Giblin, G. R. Shaver & J. A. Laundre, 1991. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72: 242–253.

    Google Scholar 

  • Peterson, B. J., J. E. Hobbie, A. E. Hershey, M. A. Lock, T. E. Ford, J. Robie Vestal, V. L. McKinley, M. A. J. Hullar, R. M. Ventullo & G. S. Yolk, 1985. Transformation of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Science 229: 1383–1386.

    Google Scholar 

  • Peterson, B. J., J. E. Hobbie & T. L. Corliss, 1986. Carbon flow in a tundra stream ecosystem. Can. J. Fish. aquat. Sci. 43: 1259–1270.

    Google Scholar 

  • Plummer, L. N. & E. Busenberg, 1982. The solubilities of calcite, aragonite and vaterite in CO2-H20 solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaC02-C02-H20. Geochim. Cosmochim. Acta 46: 1011–1040.

    Google Scholar 

  • Post, W. M., 1990. Report of a workshop on climate feedbacks and the role of peatlands, tundra, and boreal ecosystems in the global carbon cycle. Publ. No. 3289. Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, 32 pp.

    Google Scholar 

  • Rudd, J. W. M. & R. D. Hamilton, 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol. Oceanogr. 23: 337–348.

    Google Scholar 

  • Schell, D. M., 1983. Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms: delayed production from peat in Arctic food webs. Science 219: 1068–1071.

    Google Scholar 

  • Schell, D. M. & P. J. Ziemann, 1983. Accumulation of peat carbon in the Alaska arctic coastal plain and its role in biological productivity. pp. 1105-1110. In Permafrost, Fourth International Conference, National Academy Press, Washington. 1524 pp.

    Google Scholar 

  • Schindler, D. W., G. J. Brunskill, S. Emerson, W. S. Broecker & T.-H. Peng, 1972. Atmospheric carbon dioxide: its role in maintaining phytoplankton standing crops. Science 177: 1192–1194.

    Google Scholar 

  • Sellmann, P. V., J. Brown, R. I. Lewellen, H. McKim & C. Merry, 1975. The classification and geomorphic implications of thaw lakes of the arctic coastal plain, Alaska. Report 344. U.S. Army Cold Regions Research and Engineering Lab, Hanover, 24 pp.

    Google Scholar 

  • Shaver, G. R. & F. S. Chapin, III, 1986. Effect of NPK fertilization on production and biomass of Alaskan tussock tundra. Arct. Alp. Res. 18: 261–268.

    Google Scholar 

  • Shaver, G. R., K. J. Nadelhoffer & A. E. Giblin, 1992. Biogeochemical diversity and element transport in a heteroge neous landscape, the North Slope of Alaska. In M. Turner & R. Gardner (eds), Quantitative Methods in Landscape Ecology. Springer-Verlag. In press.

    Google Scholar 

  • Smith, S. D. & E. P. Jones, 1985. Evidence for wind-pumping of air-sea gas exchange based on direct measurements of CO2 fluxes. J. Geophys. Res. 90: 869–875.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic chemistry, 2nd edition. John Wiley & Sons, New York, 780 pp.

    Google Scholar 

  • Tans, P. P., I. Y. Fung & T. Takahashi, 1990. Observational constraints on the global atmospheric CO2 budget. Science 247: 1431–1438.

    Google Scholar 

  • Torgersen, T., G. Mathieu, R. H. Hesslein & W. S. Broecker, 1982. Gas exchange dependency on diffusion coefficient: direct 222Rn and 3He comparisons in a small lake. J. Geophys. Res. 87: 546–556.

    Google Scholar 

  • Wanninkhof, R., J. R. Ledwell & W. S. Broecker, 1985. Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake. Science 227: 1224–1226.

    Google Scholar 

  • Wanninkhof, R., J. R. Ledwell & W. S. Broecker, 1987. Gas exchange on Mono Lake and Crowley Lake, California. J. Geophys. Res. 92: 14567–14580.

    Google Scholar 

  • Wanninkhof, R., P. J. Mulholland & J. W. Elwood, 1990. Gas exchange rates for a first-order stream determined with deliberate and natural tracers. Water Resour. Res. 26: 1621–1630.

    Google Scholar 

  • Weiss, R. F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2: 203–215.

    Google Scholar 

  • Welch, H. E. & M. A. Bergmann, 1985. Winter respiration of lakes at Saqvaqjuac, N.W.T. Can. J. Fish. aquat. Sci. 42: 521–528.

    Google Scholar 

  • Welch, H. E., J. W. M. Rudd & D. W. Schindler, 1980. Methane addition to an Arctic lake in winter. Limnol. Oceanogr. 25: 100–113.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1979. Lirmnological analyses. W. B. Saunders, Philadelphia, 357 pp.

    Google Scholar 

  • Whalen, S. C. & W. S. Reeburgh, 1990a. Consumption of atmospheric methane by tundra soils. Nature 346: 160–162.

    Google Scholar 

  • Whalen, S. C. & W. S. Reeburgh, 1990b. A methane flux transect along the Trans-Alaska pipeline Haul Road. Tellus B42: 237–245.

    Google Scholar 

  • Wilhelm, E., R. Battino & R. J. Wilcock, 1977. Low-pressure solubility of gases in liquid water. Chem. Rev. 77: 219–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. J. O’Brien

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kling, G.W., Kipphut, G.W., Miller, M.C. (1992). The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. In: O’Brien, W.J. (eds) Toolik Lake. Developments in Hydrobiology, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2720-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2720-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5206-1

  • Online ISBN: 978-94-011-2720-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics