Advertisement

Some Free Boundary Problems With Industrial Applications

  • Antonio Fasano
Chapter
Part of the NATO ASI Series book series (ASIC, volume 380)

Abstract

These lecture notes deal with two topics each one representing a free boundary problem for a partial differential equation, arising from the analysis of interesting phenomena in different areas. The first problem models the steady states of the socalled electrochemical machining process (governed by the Laplace equation), and is characterized by free boundary conditions of Cauchy type. The second subject is a Bingham flow in a 1-D geometry; the p.d.e. is parabolic and the free boundary conditions are of nonstandard type.

Keywords

Free Boundary Free Boundary Problem Stefan Problem Free Boundary Condition Electrochemical Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.W. Alt, L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math 325 (1981), 105–144.Google Scholar
  2. H.W. Alt, L.A. Caffarelli, A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc. 282 (1984) 431–461.Google Scholar
  3. A. Acker, Heat flow inequalities with applications to heat flow optimization problems, SIAM J. Math. Anal. 8 (1977),604–618.Google Scholar
  4. A. Beurling, On free boundary problems for the Laplace equation. Seminars on Analytic Functions, I, Advanced Study Seminars (1957), 248–263.Google Scholar
  5. T. Carleman, Über ein Minimalproblem der mathematischen Physik, Math. Z. 1 (1918), 208–212.Google Scholar
  6. E. Comparini, A one-dimensional Bingham flow. To appear in J. Math. Anal. Appl. Google Scholar
  7. I.I. Daniliuk, On integral functionals with a variable domain of integration, Proc. Steklov Inst. Math. 118 (1972), Engl. Transl. AMS (1976).Google Scholar
  8. G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, SpringerVerlag, Berlin 1976.CrossRefzbMATHGoogle Scholar
  9. S.J.L. van Eijndhoven, Mathematical models based on free boundary problems (based on a course by A. Fasano), Opleiding Wiskunde voor de Industrie, Eindhoven, Report 90-01 (1990).Google Scholar
  10. C.M. Elliot, On a variation al inequality formulation of an electrochemical machining moving boundary problem and its approximation by the finite element method, J. Inst. Math. Appl. 25 (1980), 121–131.Google Scholar
  11. C.M. Elliot, A variation al inequality formulation of a steady state electrochemical machining free boundary problem, in [FaPr83], Vol II, Research Notes Math. 79 (1983), Pitman, London, 505–512.Google Scholar
  12. C.M. Elliot, J.R. Ockendon, Weak and variational methods for moving boundary problems, Research Notes Math. 59 (1982), Pitman, London (1982).Google Scholar
  13. A. Fasano, Free boundary problems and their applications, SASIAM (Bari, Italy) Report.Google Scholar
  14. A. Fasano, S.D. Howison, M. Primieerio, J.R. Ockendon, On the singularities of the one-dimensional Stefan problems with supercooling, in Mathematical Models Jor Phase Change Problems (J.F. Rodrigues ed.), Birkhäuser, Basel, 1989.Google Scholar
  15. A. Fasano, S.D. Howison, M. Primicerio, J.R. Ockendon, Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension, Quart. Appl. Math. 98 (1990), 153–168.Google Scholar
  16. A. Fasano, M. Primieerio, General free-boundary problems for the heat equation I, J. Math. Anal. Appl. 57 (1977),694–723.Google Scholar
  17. K. Friedrichs, Über ein Minimumproblem für Potentialströmungen mit freiem Rande, Math. Ann. 109 (1934), 60–82.Google Scholar
  18. J.D. Kim, On the Cauchy problem associated with the motion of a Bingham fluid in the plane, Trans. Amer. Math. Soc. 298 (1986), 371–400.Google Scholar
  19. J.D. Kim, On the initial-boundary value problem for a Bingham fluid in a three dimensional domain, Trans. Amer. Math. Soc. 304 (1987), 751–770.Google Scholar
  20. D. Kinderlehrer, L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa (4) 4 (1987), 373–391.Google Scholar
  21. A.A. Lacey, M. Shillor, Electrochemical and electro-discharge machining with a threshold current, IMA J. Appl. Math. 39 (1987), 121–142.Google Scholar
  22. A.G. MacKie, The mathematics of electrochemical machining, J. Math. Anal. Appl. 117 (1986), 548–560.Google Scholar
  23. J.A. McGeough, Principles of Electrochemical Machining, Chapman & Hall, London 1974.Google Scholar
  24. J.A. McGeough, Unsolved moving boundary problem in electro-chemical machining, in Free Boundary Problems: Applications and Theory, Vol III (A. Bossavit et al., eds.), Research Notes Math 120 (1985), 152–156.Google Scholar
  25. J.A. McGeough, H. Rasmussen, On the derivation of the quasi-steady model in electrochemical machining, J. Inst. Math. Appl. 13 (1974), 13–21.Google Scholar
  26. P.P. Mosolov, V.P. Miasnikov, Variational methods in the theory of the fluidity of a viscous-plastic medium, J. Appl. Math. Mech. 29 (1965),545–577.Google Scholar
  27. P.P. Mosolov, V.P. Miasnikov, On stagnant flow regions of a viscous-plastic medium in pipes, J, Appl. Math. Mech. 30 (1966), 841–854.Google Scholar
  28. P.P. Mosolov, V.P. Miasnikov, On qualitative singularities of the flow of a viscous-plastic medium in pipes, J. Appl. Math. Mech. 31 (1967),609–613.Google Scholar
  29. J.C.W. Rogers, Relation of the one-phase Stefan problem to the seepage of liquids and electrochemical machining, in Free Boundary Problems, Vol I (E. Magenes, ed.), Ist. Naz. Alta Mat., Roma (1980), 333–382.Google Scholar
  30. L.I. Rubinstein, The Stefan Problem, Transl. Math. Monographs. 27 Amer. Math. Soc., Providence 1971.Google Scholar
  31. D.E. Tepper, Free boundary problem, SIAM J. Math. Anal. 5 (1974),841–846.Google Scholar
  32. D.E. Tepper, On a free boundary problem, the starlike case, SIAM J. Math Anal. 6 (1975), 503–505.Google Scholar
  33. K. Yosida, Functional Analysis, 6th edition, Springer Verlag, Berlin 1980.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Antonio Fasano
    • 1
  1. 1.Dipartimento di Matematica U. DiniUniversità di FirenzeFirenzeItaly

Personalised recommendations