Skip to main content

Abstract

Numerous papers have been published on the topic of water oxidation; however, the light-driven water splitting enzyme still remains one of the enigmas of photosynthesis. In this chapter, we have summarized the advances made on the oxidation of H2O to O2 The water-oxidizing complex includes, at least, the reaction center proteins D1 and D2 and a 33 kilodalton extrinsic protein; other proteins seem also to be involved. The 33 kDa extrinsic protein may turn out to be dispensable for the molecular mechanism of O2 evolution. Chloride and calcium ions are also required, although their exact functions remain unknown. It is clear, however, that Mn undergoes dynamic changes as the oxygen clock moves from relaxed states So to S1 and S1 to S2 This is followed by conversion of S2 to S3 and S3 to S4 until O2 is evolved. It is accepted that Mn is the charge accumulator, but it is considered likely now that at one of the steps, a histidine residue may act as a redox active ligand, and store the charge. It was generally believed that Ih are released as 1,0, 1,2 during So → S1,S1 → S2 S2 → S3 and S3 → (S4) → So transitions. However, the currently accepted pattern is 1,0.5, I and 1.5. The nature of the intermediates of water oxidation form H20 to O2 is still unknown. Although the recent knowledge about the 3-D crystal structure of the reaction center complex from purple photosynthetic bacteria has led to a more precise picture of a portion of the water oxidizing complex than known before, further understanding will come after this complex is crystallized and its 3-D structure known and after rnethods are evolved to trap and monitor transient intermediates in water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

SReferences

  • Andersson B. and Styring S. (1991) Photosystem 11: Molecular organization, function, and acciimation. Current Topics in Bioenergetics. 16: 1-81

    Google Scholar 

  • Andreasson L-E. and Vanngärd T (1988) Electron transport in photosystem I and II. Annu Rev Plant Physiol Plant Mol Biol 39: 379–411

    Article  CAS  Google Scholar 

  • Amon D.I. and Darber J. (1990) Photoreduction of NADP+ by isolated reaction centers of photosystem II: Requirement for plastocyanin. Proc Natl Acad Sci USA 87: 5930–5934

    Article  Google Scholar 

  • Babcock GT (1987) The photosynthetic oxygen-evolving process. In: (J Amesz, ed.) Photosynthesis, Elsevier Science Publishers BV Biomed Div, Amsterdarn, pp 125–158

    Google Scholar 

  • Babcock G.T., Barry B.A., Debus R.I., Hoganson C.W., Atarnian M., McIntosh L., Sithole I. and Yocum C.F. (1989) Water oxidation in photosystem 11: From radical chemistry to multielectron chemistry. Biochemistry 28: 9557–9565

    Article  PubMed  CAS  Google Scholar 

  • Baianu I.C., Critchley C., Govindjee and Gutowsky H.S. (1984) NMR study of chloride ion interactions with thylakoid membranes. Proc Natl Acad Sci USA 81: 3713–3717

    Article  PubMed  CAS  Google Scholar 

  • Barry B.A. and Babcock G.T. (1987)Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA 84: 7099–7103

    Article  PubMed  CAS  Google Scholar 

  • Bouges-Bocquet B (1973) Limiting steps in photosystem 11 and water decomposition in Chlorella and spinach chloroplasts. Biochim Biophys Acta 292: 772–785

    Article  PubMed  CAS  Google Scholar 

  • Boussac A. and Rutherford A.W. (1988) Nature of the inhibition of the oxygen-evolving enzyme of photosystem II induced by NaCI washing and reversed by the addition of Ca2+ or Sr+. Biochemistry 27: 3476–3483

    Article  CAS  Google Scholar 

  • Boussac A., Zimmerman, J-L., Rutherford A.W. and Lavergne J. (1990) Histidine oxidation in the oxygenevolving photosystem II enzyme. Nature (London) 347: 303–306

    Article  CAS  Google Scholar 

  • Boussac A., Maison-Peteri B., Etienne, A-L. and Vemotte C. (1985) Reactivation of oxygen evolution of NaCI-washed photosystem 11 particles by Ca2+ and/or the 24 kDa protein. Biochim Biophys Acta 808: 231–234

    Article  CAS  Google Scholar 

  • Brettel K., Schlödder E. and Witt H.T. (1984) Nanosecond reduction kinetics of photooxidized chlorophyll au (P680) in single flashes as a probe for the electron pathway, W release and charge accumulation in the O2-evolving complex. Biochim Biophys Acta 766: 403–428

    Article  CAS  Google Scholar 

  • Brudvig G.W., Beck W.F. and dePaula J. (1989) Mechanism of photosynthetic water oxidation. Annu Rev Biophys Biophys Chem 18: 25–46

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T. (1987) The origin of cells: A symbiosis between genes, catalysts, and membranes. Cold Spring Harbor Symp Quant Biol 52: 805–824

    Article  PubMed  CAS  Google Scholar 

  • Coleman W.J. (1990) Chloride binding proteins: Mechanistic implications for the oxygen-evolving complex of photosystem II. Photosynth Res 23: 1–28

    Article  CAS  Google Scholar 

  • Coleman W.J. and Govindjee (1987) A model for the mechanism of chloride activation of oxygen evolution in photosystem 11. Photosynth Res 13: 199–223

    Google Scholar 

  • Coleman W.J. and Youvan O.C. (1990) Spectroscopic analysis of genetically modified photosynthetic reaction centers. Annu Rev Biophys Biophys Chem 19: 333–367

    Article  PubMed  Google Scholar 

  • Coleman W.J., Govindjee and Gutowsky H.S. (1987) The location of the chloride binding sites in the oxygen evolving complex of spinach photosystem II. Biochim Biophys Acta 894: 453–459

    Article  CAS  Google Scholar 

  • Cramer W.A., Furbacher P.N., Szczepaniak and Tae G.S. (1991) Electron transport between photosystem 11 and photosystem I. Current Topics in Bioenergetics 16: 179–222

    Article  CAS  Google Scholar 

  • Critchley C., Baianu I.C., Govindjee and Gutowsky H.S. (1982) The role of chloride in O2 evolution by thylakoids from salt-tolerant higher plants. Biochim Biophys Acta 682: 436–445

    Article  CAS  Google Scholar 

  • Crofts A.R. and Wraight C. (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149–185

    Article  CAS  Google Scholar 

  • Danelius R.V., Satoh K., van Kan P.J.M., Plijter J.J., Nuijs A.M. and van Gorkom H.J. (1987) The primary reaction of photosystem II in the DI-D2-cytochrome b-559 complex. FEBS Lett 213: 241–244

    Google Scholar 

  • Debus R.I., Barry B.A., Babcock G.T. and Mcintosh L. (1988a) Site-directed mutagenesis identifies a tyrosine radical in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA 85: 427–430

    Article  PubMed  CAS  Google Scholar 

  • Debus R.I., Barry B.A., Sithole I., Babcock G.T. and McIntosh L. (1988b) Directed mutagenesis indicates that the donor to P+680 in Photosystem II is tyrosine-161 of the Dl polypeptide. Biochemistry 27: 9071-9074

    Google Scholar 

  • Deisenhofer J. and Michel H. (1988) The photosynthetic reaction center for the purple bacterium Rhodopseudomonas viridis. The Nobellecture. EMBO J 8: 2149–2170

    Google Scholar 

  • Dekker J.P., Plijter J.J., Ouwenhand L and Van Gorkom HJ (1984a) Kinetics of manganese redox transitions in the oxygen-evolving apparatus of photosynthesis. Biochim Biophys Acta 767: 176–179

    Google Scholar 

  • Dekker J.P., Van Gorkom H.J., Brok M. and Ouwenhand L. (1984b) Optical characterization of photosystem II electron donors. Biochim Biophys Acta 764: 301–309

    Article  CAS  Google Scholar 

  • Dekker J.P., Van Gorkom H.J., Wensink J. and Ouwenhand L. (1984c) Absorbance difference spectra of the successive redox states of the oxygen-evolving apparatus of photosynthesis. Biochim Biophys Acta 767: 1–9

    Article  CAS  Google Scholar 

  • Delrieu M-J. (1974) Simple explanation of the misses in the cooperation of charges in photosynthetic O2 evolution. Photochem Photobiol 20: 441–454

    Article  CAS  Google Scholar 

  • Diner B. (1986) The reaction center of photosystem II. Encycl Plant Physiol. New Series 19: 422–436

    Google Scholar 

  • Dismukes G.C. (1986) The metal centers of the photosynthetic oxygen-evolving complex. Photochem Photobiol 43: ai]Dismukes G.C. (1988) The spectroscopically derived struClure of the manganese site for photosynthetic water oxidation and a proposal for the protein binding sites for calcium and manganese. Chemica Scripta 28A: 99–104

    Article  CAS  Google Scholar 

  • Dismukes G.C. and Siderer Y. (1981) Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc Natl Acad Sci USA 78: 274–278

    Google Scholar 

  • Eckert H.J., Weise N., Bemarding J., Eichler H.J. and Renger G. (1988) Analysis of the electron transfer from Pheo-to QA in PS II membrane fragments from spinach by time resolved"325 nm absorption changes in the picosecond domain. FEBS Lett 240: 153–158

    Google Scholar 

  • Emerson R. and Amold W. (1932a) Aseparation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420

    Article  PubMed  CAS  Google Scholar 

  • Emerson R. and Amold W. (1932b) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Article  PubMed  CAS  Google Scholar 

  • Feher G., Allen J.P., Okamura M.Y. and Reese D.C. (1989) Structure and function of bacterial photosynthetic reaction centres. Nature (London) 339: 111–116

    Article  CAS  Google Scholar 

  • Forbush B., Kok B. and McGloin M. (1971) Cooperation of charges in photosynthetic O2 evolution-li. Damping of flash yield oscillation, deactivation. Photochem Photobiol 14: 307–321

    Article  CAS  Google Scholar 

  • Förster V. and Junge W. (1985) Stoichiometry and kinetics of proton release upon photosynthetic water oxidation. Photochem Photobiol 41: 183–190

    Article  Google Scholar 

  • Fowler C.F. (1977) Proton evolution from photosystem 11. Stoichiometry and mechanistic considerations. Biochim Biophys Acta 462: 414–421

    Article  PubMed  CAS  Google Scholar 

  • Gerday C.h.., Bolis L. and Gilles R., eds. (1988) Calcium and calcium binding proteins. Springer Verlag, New York

    Google Scholar 

  • George G.N., Prince R.C. and Cramer S.P. (1989) The manganese site of the photosynthetic water-splitting enzyme. Seience 243: 789–791

    Article  CAS  Google Scholar 

  • Ghanotakis D.F. and Yocum C.F. (1985) Polypeptides of photosystem 11 and their role in oxygen evolution. Photosynth Res 7: 97–114

    Article  CAS  Google Scholar 

  • Ghanotakis D.F. and Yocum C.F. (1990) Photosystem 11 and the oxygen evolving complex. Annu Rev Plant Physiol Plant Mol Biol 41: 255–276

    Article  CAS  Google Scholar 

  • Ghanotakis D.F., Babcock G.T. and Yocum C.F. (1984) Calcium reconstitutes high levels of oxygen evolution in polypeptide depleted photosystem 11 preparations. FEBS Leu 167: 127–130

    Article  CAS  Google Scholar 

  • Goodin D.B., Yachandra V.K., Britt R.D., Sauer K. and Klein M.P. (1984) The state of manganese in the photosynthetic apparatus. 3. Light-induced changes in the X-ray absorption (K-edge) energies of manganese in photosynthetic membranes. Biochim Biophys Acta 767: 209–216

    Article  CAS  Google Scholar 

  • Govindjee (1980) The oxygen evolving system of photosynthesis. Plant Biochem J (lndia) Sircar Memorial Volume: 7–30

    Google Scholar 

  • Govindjee, ed. (1982) Photosynthesis: Energy Conversion by Plants and Bacteria. Vol I, Academic Press. New York

    Google Scholar 

  • Govindjee (1984) Photosystem 11: The oxygen evolving system of photosynthesis. In: (C. Sybesma, ed) Advances in Photosynthesis Research, Vol 1, Martinus Nijhoff/Dr. W. Junk Publishers. The Hague, pp 237–338

    Google Scholar 

  • Govindjee and Coleman W. (1990) How plants make oxygen. Scientific 262: 50–58

    Article  CAS  Google Scholar 

  • Govindjee and Eaton-Rye J.J.S. (1986) Electron transfer through photosystem 11 acceptors: Interaction with anions. Photosynth Res 10: 365–379

    Article  CAS  Google Scholar 

  • Govindjee and Govindjee R. (1974) Primary events in photosynthesis. Scientific American 231: 68–82

    PubMed  CAS  Google Scholar 

  • Govindjee and Homann P.H. (1989) Function of chloride in water oxidation in photosynthesis. In: (A Kotyk, ed) Highlights of Modern Biochem. Vol I, VSP, Utrecht, pp 933–961

    Google Scholar 

  • Govindjee and Wasielewski M.R. (1989) Photosystem 11: From a femtosecond to a millisecond. In: (WR Briggs, ed) Photosynthesis, Alan R Liss, Inc., New York, pp 71–103

    Google Scholar 

  • Govindjee, Baianu I.C., Critchley C., and Gutowsky H.S. (1983) Comments on the possible roles of bicarbonate and chloride ions in photosystem II. In: (Y Inoue, AR Crofts, Govindjee, N Murata, G Renger, and K Satoh, eds) The Oxygen Evolving System of Photosynthesis. Academic Press, Tokyo, pp 283–292

    Google Scholar 

  • Govindjee, Kambara T. and Coleman W. (1985) The electron donor side of photosystem 11: The oxygen evolving complex. Photochem Photobiol 42: 187–210

    Google Scholar 

  • Guiles R.D., Yachandra V.K., McDermon A., Cole J., Brin R.D., Dexheimer S.L., Sauer K. and Klein M.P. (1987) Structural features of the manganese cluster in different state of the oxygen evolving complex to photosystem 11: An X-ray absorption spectroscopy study.In: (J Biggins, ed) Progress in Photosynthesis Research, Vol 1, Martinus Nijhoff, Dordrecht, pp 561–564

    Google Scholar 

  • Guiles R.D., Yachandra V.K., McDermon A.E., Cole, I.L., Dexheimer S.L., Brin R.D., Sauer K. and Klein M. (199Oa) The So state ofphotosystem 11 induced by hydroxylamine: Differences between the structure of the manganese complex in the So and SI states determined by X-ray absorption spectroscopy. Biochemistry 29: 486–496

    Google Scholar 

  • Guiles R.D., Zimmermann J-L., McDermott, A.E., Yachandra V.K., Cole I.L., Dexheirner S.L., Brin R.D., Wieghardt K., Bossek U., Sauer K. and Klein M.P. (199Ob) The S3 state of photosystem 11: Differences between the structure of the manganese complex in the S2 and S3 states determined by X-ray absorption spectroscopy. Biochemistry 29: 471–485

    Google Scholar 

  • Haddy A., Aasa R. and Andreasson L-E. (1989) S-band EPR studies of the Srstate multiline signal from the photosynthetic oxygen-evolving complex. Biochemistry 28: 6954–6959

    Article  CAS  Google Scholar 

  • Hansson Ö. and Wydrzynski T. (1990) Current perceptions of photosystem II. Photosynth Res 23: 131–162

    Article  CAS  Google Scholar 

  • Hansson Ö, Andreasson L-E. and Vanngird T. (1986) Oxygen from water is coordinated to manganese in the S2 state of photosystem II. FEBS Lett 195: 151–154

    Article  CAS  Google Scholar 

  • Hansson Ö., Duranton J. and Mathis P. (1988) Yield and Iifetime of the primary radical pair in preparations of photosystem 11 with different antenna size. Biochim Biophys Acta 932: 91–96

    Article  CAS  Google Scholar 

  • Hind G., Nakatani H.Y. and Izawa S. (1969) The role of chloride in photosynthesis. The chloride requirement of electron transport. Biochim Biophys Acta 172: 277–289

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth A.R. (1987) Picosecond fluorescence spectroscopy and energy transfer in photosynthetic antenna pigments. Topics Photosynth 8: 95–157

    Google Scholar 

  • Homann P.H. (1987) The relations between the chloride, calcium and polypeptide requirements of photosynthetic water oxidation. J. Bioenerg Biomembr 19: 105–123

    Article  PubMed  CAS  Google Scholar 

  • Homann P.H. (1988) The chloride and calcium requirement of photosynthetic water oxidation: Effects of pH. Biochim Biophys Acta 934: 1–13

    Article  CAS  Google Scholar 

  • Homann P.H. (1990) The role of calcium in photosynthetic water oxidation. In: (U Anghileri, ed) The Role of Calcium in Biological Systems, Vol. V, CRC Press, Inc, Boca Raton, FL, pp. 79–96

    Google Scholar 

  • Homann P.H., Gleiter H., Ono T. and Inoue Y. (1986) Storage of abnormal oxidantS ∑12and ∑3 in photosynthetic water oxidases inhibited by chloride removal. Biochim Biophys Acta 850: 10–20

    Article  CAS  Google Scholar 

  • Joliot P., Barbieri G. and Chabaud R. (1969) Un nouveau modele des centres photochimique du systeme II. Photochem Photobiol 10: 309–329

    Article  CAS  Google Scholar 

  • Kambara T. and Govindjee (1985) Molecular mechanism of water oxidation in photosynthesis based on the functioning of manganese in two different environments. Proc Natl Acad Sci USA 82: 6119–6123

    Google Scholar 

  • Kelley P.M. and Izawa S. (1978) The role of chloride ion in photosystem 11. I Effects of chloride ion on photosystem 11 electron transport and on hydroxylamine inhibition. Biochim Biophys Acta 502: 198–210

    Article  PubMed  CAS  Google Scholar 

  • Kirby, J.A., Robertson A.S., Smith J.P., Tbompson A.C., Cooper S.R. and Klein M.P. (1981) State of manganese in the photosynthetic apparatus. I. Extended X-ray absorption fine structure studies on chloroplasts and di-u-oxo-bridged dimanganese model compounds. J Am Chem Soc 103: 5529–5537

    Article  CAS  Google Scholar 

  • Kok B. and Cheniae G.M. (1966) Kinetics and intermediate steps of the oxygen evolving step in photosynthesis. In: (DR Sanadi, ed) Current Topics in Bioenergetics, Vol 1, Academic Press, New York, pp 1–97

    Google Scholar 

  • Kok B., Forbush B. and McGloin M. (1970) Cooperation of charges in photosynthetic oxygen evolution: I. A linear four step mechanism. Photochem Photobiol 11: 457–475

    Article  PubMed  CAS  Google Scholar 

  • Kretschmann H., Dekker J.P., Saygin O. and Will H.T. (1988) An agreement on the quatemary oscillation of uItraviolet absorption changes accompanying the water splitting in isolated photosystem 11 complexes from the cyanobacterium Synechococcus. Biochim Biophys Acta 932: 358–361

    Article  CAS  Google Scholar 

  • Lavergne J. (1987) Optical difference spectra of the S-state transitions in the photosyrithetic oxygen evolving complex. Biochim Biophys Acta 894: 91–107

    Article  CAS  Google Scholar 

  • Lavergne J. (1991) Improved UV-visible spectra of the S-transitions in the photosynthetic oxygen-evolving system. Biochim Biophys Acta 1060: 175–188

    Article  CAS  Google Scholar 

  • Mar T. and Govindjee (1972) Kinetic models of oxygen evolution in photosynthesis. J Theoret Biol 36: 427–446

    Google Scholar 

  • Mathis P. (1986) Structural aspects ofvectoriaI eiectron transfer in photosynthetic reaction centers. Photosynth Res 8: 97–111

    Article  CAS  Google Scholar 

  • Metz J.G., Nixon P.J., Rögner M., Brudvig G.W. and Diner B.A. (1989) Directed alteration of the Dl polypeptide of photosystem 11: Evidence that tyrosine-161 is the redox component Z, connecting the oxygenevolving complex to the primary electron donor, P680, Biochemistry 28: 6960–6969

    Article  PubMed  CAS  Google Scholar 

  • Michel H. (1982) Three-dimensionai crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 158: 567–572

    Article  PubMed  CAS  Google Scholar 

  • Michel H. and Deisenhofer J. (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 1–7

    Article  CAS  Google Scholar 

  • Moya I., Sebban P. and Haehnel W. (1986) Lifetime of excited states and quantum yield of chlorophyll a fluorescence in vivo. In: (Govindjee, J Amesz, and oe Fork, eds) Light Emission by Plants and Bacteria, Academic Press, Orlando, pp 161–190

    Google Scholar 

  • Murata N. and Miyao M. (1985) Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex. Trends in Biochem Seiences (TIBS) 10: 122–124

    Article  CAS  Google Scholar 

  • Nanba O. and Satoh K. (1987) Isolation of a photosystem 11 reaction center consisting of 0-1 and 0-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Nuijs A.M., vanGorkom H.J., Plijter J.J. and Duysens L.N.M. (1986a) Primary charge separation and excitation of chlorophyll a in photosystem D particles from spinach as studied by picosecond absorption difference spectroscopy. Biochim Biophys Acta 848: 167–175

    Article  CAS  Google Scholar 

  • Nuijs A.M., Shuvalov V.A., van Gorkom H.J., Plijter J.J. and Duysens L.N.M. (1986b) Picosecond absorbance difference spectroscopy on primary reactions and the antenna excited states in photosystem I particles. Biochim Biophys Acta 850: 31–318

    Google Scholar 

  • Okamura M.Y., Satoh K., Isaacson R.A. and Feber G. (1987) Evidence of the primary charge separation in Dl~ complex of photosystem D from spinach: EPR of the triplet state. In: (J Biggins, ed) Progress in Photosynthesis Research, Vol 1, Martinus Nijhoff, The Hague, pp 379–391

    Google Scholar 

  • Ono T. and Inoue Y. (1984) Ca2+-dependent restoration of O2 evolving activity in CaCl2-washed PS II particles depleted of 33, 24 and 16 kDa polypeptides. FEBS Lett 168: 281–286

    Article  CAS  Google Scholar 

  • Ono T. and Inoue Y. (1991) A possible role of redox-active histidine in the photoligation of manganese into a photosynthetic Oz-evolving enzyme. Biochemistry 30: 6183–6188

    Article  PubMed  CAS  Google Scholar 

  • Ono T., Zimmerman J.L., Inoue Y. and Rutherford A.W. (1986) EPR evidence for a modified S-state transition in chloride-depleted photosystem II. Biochim Biophys Acta 851: 193–201

    Article  CAS  Google Scholar 

  • Ort D. (1986) Energy transduction in oxygenic photosynthesis: An overview of structure and mechanism. Encycl Plant Physiol, New Series 19: 143–196

    Google Scholar 

  • On D.R. and Melandri B.R.(1982) Mechanism of ATP synthesis. In: (Govindjee, ed) Photosynthesis: Energy Conversion by Plants and Bacteria, Vol 1, Academic Press, New York, pp 537–587

    Google Scholar 

  • Padhye S., Kambara T., Hendrickson D.F.N. and Govindjee (1986) Manganese-histidine cluster as the functional center of the water oxidation complex in photosynthesis. Photosynth Res 9: 103–112

    Google Scholar 

  • Pecoraro V.L. (1988) Structural proposals for the manganese centers of the oxygen evolving complex. An inorganic chemist's perspective. Photochem Photobiol 48: 249–264

    Article  CAS  Google Scholar 

  • Penner-Hahn J.E., Fronko R.M., Yocum C.F., Betts S.D. and Bowlby N.R. (1989) X-ray absorption spectroscopy of the manganese sites in the photosynthetic oxygen evolving complex (Abstract No. 793). Physiol Plant 76: A143

    Google Scholar 

  • Piccioni R. and Mauzerall D. (1976) Increase effected by calcium ion in the rate of oxygen evolution from preparations of Phormidium luridum. Biochim Biophys Acta 423: 605–609

    Article  PubMed  CAS  Google Scholar 

  • Preston C. and Pace R.J. (1985) The S-state dependence of chloride binding to plant photosystem II. Biochim Biophys Acta 810: 388–391

    Article  CAS  Google Scholar 

  • Preston C. and Seibert M. ( 1990) Partial identification of the high-affinity Mn-binding site in Scenedesmus obliquus photosystem II. In: (M Baltscheffsky, ed) Current Research in Photosynthesis, vol II, Kluwer Acad Publ, Dordrecht, The Netherlands pp 423–426

    Google Scholar 

  • Radmer R. and Ollinger D. (1986) Do the higher oxidation states of the photosynthetic O2-evolving system contain bound H20? FEBS Lett 195: 285–289

    Article  PubMed  CAS  Google Scholar 

  • Rao K.K., Hall D.O. and Cammack R. (1981) The photosynthetic apparatus. In: (H Gutfreund, ed) Biochemical Evolution, Cambridge University Press, Cambridge, pp 150–202

    Google Scholar 

  • Reed G.H. (1986) Manganese: An overview of chemical properties. In: (VL Schramm and FC Wedler, eds.) Manganese in Metabolism and Enzyme Function, Academic Press, Orlando, pp 313–325

    Google Scholar 

  • Reed G.H. and Markham G.C. (1984) EPR studies of Mn(II) complexes with enzymes and proteins. Biol Magn Res 6: 73–142

    Article  CAS  Google Scholar 

  • Renger G. (1987a) Mechanistic aspects of photosynthetic water cleavage. Photosynthetica 21: 203–224

    CAS  Google Scholar 

  • Renger G. (1987b) Biological exploitation of solar energy by photosynthetic water splitting. Angew Chemie (Int Eng Ed) 26: 643–660

    Google Scholar 

  • Renger G. (1988) On the mechanism of photosynthetic water oxidation to dioxygen. Chemica Scripta 28A: 105–109

    Google Scholar 

  • Renger G. and Govindjee (1985) The mechanism of photosynthetic water oxidation. Photosynth Res 6: 33–55

    Google Scholar 

  • Renger G. and Hanssum B. (1988) Studies on the deconvolution of flash-induced absorption changes into the difference spectra of individual redox steps in the water-oxidizing enzyme system. Photosynth Res 16: 243–259

    Article  CAS  Google Scholar 

  • Renger G., Wacker U. and Volker M. (1987) Studies on the protolytic reactions coupled with water cleavage in photosystem II membrane fragment from spinach. Photosynth Res 13: 167–189

    Article  CAS  Google Scholar 

  • Rutherford A.W. (1989) Photosystem II, the water splitting enzyme. TIBS 14: 227–232

    PubMed  CAS  Google Scholar 

  • Saphon S. and Crofts A.R. (1977) Protolytic reactions in photosystem II: A new model for the release of protons accompanying the photooxidation of water. Z Naturforsch 32C: 617–626

    Google Scholar 

  • Sauer K., Guiles R.D., McDermott A.E., Cole J.L., Yachandra V.Y., Zimmerman J-L., Klein M.P., Dexheimer S.L. and Britt R.D. (1988) Spectroscopic studies of manganese involvement in photos)Cnthetic oxygen evolution. Chemica Scripta 28A: 87–91

    Google Scholar 

  • Sauer K., Yachandra V.K., Britt R.D. and Klein M.P. (1991) The photosynthetic water oxidation complex studied by EPRand X-ray absorption spectroscopy. In: (VL Pecoraro, ed) Manganese Redox Enzymes. VCH Publishers, N.Y., 47 pages, in press

    Google Scholar 

  • Schatz G.H., Brock H. and Holzwarth A.R. (1987) Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc Natl Acad Sci USA 84: 8414–8418

    Article  PubMed  CAS  Google Scholar 

  • Schlödder E., Brettel K. and Witt (1985) Relation between microsecond reduction kinetics of photooxidized chlorophyll an (P680) in photosystem II particles from Synechococcus sp. Biochim Biophys Acta 808: 1232–131

    Google Scholar 

  • Sivaraja M., Tso, J. and Dismukes G.C. (1989) A calcium-specific site influences the structure and activity of the manganese cluster responsible for photosynthetic water oxidation. Biochemistry 28: 9459–9464

    Article  PubMed  CAS  Google Scholar 

  • Sonneveld A., Rademaker H. and Duysens L.N.M. (1979) Chlorophyll a fluorescence as a monitor of nanosecond reduction of the photooxidized primary donor P-680+ of photosystem II. Biochim Biophys acta 548: 536–551

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan A.N. and Sharp R.R. (1986a) Flash-induced enhancements in the proton NMR relaxation rate of photosystem II particles. Biochim Biophys Acta 850: 211–217

    Article  CAS  Google Scholar 

  • Srinivasan A.N. and Sharp R.R. (1986b) Flash-induced enhancements in the proton NMR relaxation rate of photosystem II particles: Response to flash trains of 1-5 flashes. Biochim Biophys Acta 851: 369–376

    Article  CAS  Google Scholar 

  • Styring S. and Rutherford A.W. (1987) In the oxygen evolving complex of photosystem II the So state is oxidized to the SI state by D+ (Signal IIslow). Biochemistry 26: 2401–2405

    Article  CAS  Google Scholar 

  • Takahashi Y., Hansson O., Mathis P. and Satoh K. (1987) Primary radical pair in the photosystem II reaction center. Biochim Biophys Acta 893: 49–59

    Article  CAS  Google Scholar 

  • Tamura N., Ikeuchi M. and Inoue Y. (1989) Assignment of histidine residues in Dl protein as possible ligands for functional manganese in photosynthetic water-oxidizing complex. Biochim Biophys Acta 973: 281–289

    Article  CAS  Google Scholar 

  • Thielen A.P.G.M. and van Gorkom H.J. (1981) Energy transfer and quantum yield in photosystem II. Biochim Biophys Acta 637: 439–446

    Article  CAS  Google Scholar 

  • Turco R.P. (1985) The photochemistry of the stratosphere. In: (IS Levine, ed) The photochemistry of Atmospheres, Academic Press, Orlando, pp 77–128

    Google Scholar 

  • van Best J.A. and Mathis P. (1978) Kinetics of the oxidized primary electron donor of photosystem II in spinach chloroplasts and in Chlorella cells in the microsecond and nanosecond time ranges following flash excitation. Biochim Biophys Acta 503: 178–188

    Article  PubMed  Google Scholar 

  • van Gorkom H.J. (1985) Electron transfer in photosystem II. Photosynth Res 6: 97–112

    Article  Google Scholar 

  • Veizer J. (1988) The earth and its life: Systems perspective. Origins of Life Evol Bios 18: 13–39

    Article  CAS  Google Scholar 

  • Velthuys B. (1980) Mechanisms of electron flow in photosystem II and towards photosystem I. Annu Rev Plant Physiol 31: 545–567

    Article  CAS  Google Scholar 

  • Velthuys B. (1987) Photosystem II reaction center. Topics Photosynth 8: 341–378

    Google Scholar 

  • Vermaas W.F.J. and Govindjee (1981) The acceptor side of photosystem II in photosynthesis. Photochem PilOtobiol 34: 775–793

    Google Scholar 

  • Vermaas W.F.J. and Ikeuchi M. (1991) Photosystem II. In: (L Bogorad and IK Vasil, eds) The Photosynthetic Apparatus: Molecular Biology and Operation, Academic Press, San Diego, pp. 25–111

    Chapter  Google Scholar 

  • Vermaas W.F.J., Renger G. and Dohnt A. (1984) The reduction of the oxygen evolving system in chloroplasts by Ihylakoid components. Biochim Biophs Acta 764: 194–202

    Article  CAS  Google Scholar 

  • Vermaas W.F.J., Rutherford A.W., and Hansson Ö (1988) Site-directed mutagenesis in photosystem II of the cyanobacterium, Synechocystis sp. PeC 6803: The donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci USA 85: 8477–8481

    Article  CAS  Google Scholar 

  • Vermaas W.F.J., Charite J. and Shen G. (1990) Glu-69 of the D2 protein in photosystem II is a potential ligand to Mn involved in photosynthetic oxygen evolution. Biochemistry 29: 5325–5332

    Article  PubMed  CAS  Google Scholar 

  • Wasielewski M.R., Jolinson D.G., Seibert M. and Govindjee (1989) Determination of the primary charge separation rate in isolated photosystem II reaction centers with 500 femtosecond time resolution. Proc Natl Acad Sci USA 86: 524–528

    Google Scholar 

  • Wayne R.P. (1988) Principles and Applications of Photochemistry. Oxford University Press, Oxford, pp 181–191

    Google Scholar 

  • Weiss C. and Sauer K. (1970) Activation kinetics of photosynthetic oxygen evolution under 20-40 nanosecond laser flashes. Photochem Photobiol 11: 495–501

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T. (1982) Oxygen evolution in photosynthesis. In: (Govindjee, ed) Photosynthesis: Energy Conversion by Plants and Bacteria. Vol 1. Academic Press, New York. pp 469–506

    Google Scholar 

  • Wydrzynski T. and Sauer K. (1980) Periodic changes in the oxidation state of manganese in photosynthetic oxygen evolution upon illumination with flashes. Biochim Biophys Acta 589: 56–70

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T., Zumbulyadis N. Schmidt P.G. and Govindjee (1975) Water proton relaxation as a monitor of membrane-bound manganese in spinach chloroplasts. Biochim Biophys Acta 408: 349–354

    Google Scholar 

  • Wydrzynski T., Marks S.B., Schmidt P.G., Govindjee and Gutowsky H.S. (1978) Nuclear magnetic relaxation by the manganese in aqueous suspensions of chloroplasts. Biochemistry 17: 2155–2162

    Google Scholar 

  • Wydrzynski T., Angstrom J., Baumgart F., Renger G. and VanngArd T. (1990a) 35CI_NMR Iinewidth measurements of aqueous suspensions of photosystem II membrane fragments reveal only a simple hyperbolic dependence with chloride concentration. Biochim Biophys Acta 1018: 55–60

    Article  CAS  Google Scholar 

  • Wydrzynski T., Baumgart F., MacMillan F. and Renger G. (1990b) Is there a direct chloride cofactor requirement in the oxygen-evolving reactions of photo-system II? Photosynth Res 25: 59–72

    Article  CAS  Google Scholar 

  • Yachandra V.K., Guiles R.D., McDennott A., Britt R.D., Dexheimer S.L., Sauer K. and Klein M.P. (1986a) The state of manganese in the photosynthetic apparatus. 4. Structure of the manganese complex in photosystem II studies using EXAFS spectroscopy. The SI state of the Orevolving photosystem II complex from spinach. Biochim Biophys Acta 850: 324–332

    Article  CAS  Google Scholar 

  • Yachandra V.K., Guiles R.D., Sauer K. and Klein M.P. ( I 986b ) The state of Mn in the photosynthetic apparatus. 5. The chloride effect in photosynthetic oxygen evolution. Is halide coordinated to the EPR-active Mn in the oxygen evolving complex? Studies on the substructure of the low temperature multiline EPR signal. Biochim Biophys Acta 850: 333–342

    Google Scholar 

  • Yachandra V.K., Guiles R.D., McDennott A.E., Cole J.L., Britt D.R., Dexheimer S.L., Sauer K. and Klein M.P. (1987) Comparison of the structure of the manganese complex in the SI and S2 states of the photosynthetic 0revolving complex: An X-ray absorption spectroscopy study. Biochemistry 26: 5974–5981

    Article  PubMed  CAS  Google Scholar 

  • Yocum C.F. ( 1991) Calcium activation of photosynthetic water oxidation. Biochim Biophys Acta 1059: 1–15

    Article  CAS  Google Scholar 

  • Yocum C.F., Yerkes C.T., Blankenship R., Sharp R.R. and Babcock G.T. (1981) Stoichiometry, inhibitor sensitivity, and organization of manganese associated with photosynthetic oxygen evolution. Proc Natl Acad Sci USA 78: 7507–7511

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Govindjee, Coleman, W.J. (1993). Oxidation of Water to Molecular Oxygen. In: Abrol, Y.P., Mohanty, P., Govindjee (eds) Photosynthesis: Photoreactions to Plant Productivity. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2708-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2708-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5200-9

  • Online ISBN: 978-94-011-2708-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics