Skip to main content

Carbon Dioxide Enrichment Effects on Photosynthesis and Plant Growth

  • Chapter

Abstract

Increasing atmospheric carbon dioxide directly stimulates photosynthesis and plant growth. However, other environmental variables affect the relation between CO2 concentration and photosynthesis and thus the links between carbon assimilation, growth and yield. Limitations to photosynthesis under short-term enrichment conditions are quite unlike those found in plants grown in high CO2 for a longer time. The effects of high CO2 concentrations on the rate of photosynthesis under both short-term and long-term enrichment conditions are discussed. Acclimation of photosynthesis, i.e., an increase or decrease in the rate under long-tenn CO2 enrichment is examined with emphasis on factors regulating photosynthesis at the metabolic level. Apart from stimulatory effect on photosynthesis, high CO2 concentrations affect plant growth and biomass partitioning. The role of elevated CO2 concentrations in enhancement of growth and yield are discussed. Finally, we discuss the interaction of high CO2 with environmental variables like temperature, water and nutrient in context of photosynthesis and growth in order to assess the present state of knowledge and to identify areas for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerson R.C., Havelka U.D. and Boyle M.G. (1984) CO2 enrichment effects on soybean physiology. II Effects of stage specific CO2 exposure. Crop Sci 24: 1150–1154

    Article  CAS  Google Scholar 

  • Akita S. and Moss O.N. (1973) Differential stomatal response between C3 and C. species to atmospheric CO2 concentration and light. Crop Sci 13: 234–237

    Article  CAS  Google Scholar 

  • Allen L.H. Jr (1979) Potential for carbon dioxide enrichment. In: (81 Barfield and JF Gerber, eds) Modification of the Aerial Environmental of Plants. American Society of Agricultural Engineers Monograph, St. Joseph, Michigan pp 500–519

    Google Scholar 

  • Aoki M. and Yabuki K. (1977) Studies on the carbon dioxide enrichment for plant growth. VII Changes in dry matter production and photosynthetic rate of cucumber during carbon dioxide enrichment. Agric Meteorol 18: 475–485

    Article  Google Scholar 

  • Arteca R.N., Pooviah B.W. and Smith O.E. (1979) Changes in carbon fixation, tuberization and growth induced by CO2 application to the root zone of potato plants. Science 21: 1279–1280

    Article  Google Scholar 

  • Azcon-Bieto J. (1983) Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiol 73: 681–686

    Article  PubMed  CAS  Google Scholar 

  • Baysdorter C. and Bassham J.A. (1985) Photosynthate supply and utilization of alfalfa. A developmental shift from a source to a sink limitation. Plant Physiol 77: 313–317

    Article  Google Scholar 

  • Bazzaz F.A. (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21: 167–196

    Article  Google Scholar 

  • Berhuizen I.F. and Slatyer R.O. (1964) Photosynthesis of cotton leaves under a range of environmental conditions in relation to interqal and external diffusive resistances. Aust J Bioi Sci 17: 348–359

    Google Scholar 

  • Bishop P.M. and Whittingham C.P. (1968) The photosynthesis of tomato plants in carbon dioxide enriched atmosphere. Photosynthetica 2: 31–38

    Google Scholar 

  • Bloom A.J., Chapin F.S. III and Mooney H.A. (1985) Resource limitation in plants—An economic analogy. Annu Rev Ecol Syst 16: 363–392

    Google Scholar 

  • Boyer I.S. (1971) Recovery of photosynthesis in sunflower after a period of low leaf water potential. Plant Physiol 47: 816–820

    Article  PubMed  CAS  Google Scholar 

  • Brown H.T. and Escombe F. (1902) Influence of varying amount of carbon dioxide in the air on the photosynthetic process of leaves and on the mode of growth of plants. Proc Roy Soc Lond 70: 397–413

    Article  CAS  Google Scholar 

  • Brown K. and Higginbotham K.O. (1986) Effects of carbon dioxide enrichment and nitrogen supply on growth of boreal tree seedlings. Tree Physiol 2: 223–232

    Article  PubMed  Google Scholar 

  • Bruggnick G.T. (1984) Effect of CO2 concenttation on growth and photosynthesis of young tomato and carnation plants. Acta Horticulture 162: 279

    Google Scholar 

  • Brum W.A. and Cooper R.L. (1967) Effects of light intensity and carbon dioxide concentration on photosynthetic rate of soybean. Crop Scf 7: 451–454

    Article  Google Scholar 

  • Campbell W.I., Allen L.H. Jr and Bowes G. (1988) Effects of CO2 concentration on Rubisco activity, amOUnt and photosynthesis in soybean leaves. Plant Physiol 88: 1310–1316

    Article  PubMed  CAS  Google Scholar 

  • Cambell O.E. and Young R. (1986) Short term CO2 exchange response to temperature, irradiance and CO2 concenttation in sttawberry. Photosynth Res 8: 31–40

    Article  Google Scholar 

  • Cave G., Tolley L.C. and Strain B.R. (1981) Effect of carbon dioxide enrichment on chlorophyll content, starch content and starch grain structure in Trifolium subterraneum leaves. Physiol Plant 51: 171–174

    Article  CAS  Google Scholar 

  • Chang C.W. (1975) Carbon dioxide and senescence in cotton plants. Plant Physiol 55: 515–519

    Article  PubMed  CAS  Google Scholar 

  • Clough J.M. and Peet M.M. (1981) Effects of intermittent exposure to high atmospheric CO2 on vegetative growth in soybean. Physiol Plant 53: 565–569

    Article  Google Scholar 

  • Clough J.M., Peet M.M. and Kramer P.I. (1981) Effects of high atmospheric CO2 and sink size on rates of photosynthesis of a soYbe8n cultivar. Plant Physiol 67: 1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Cooper R.L. and Brun W.A. (1967) Response of soybeans to a carbon dioxide enriched atmosphere. Crop Sci 7: 455–457

    Article  Google Scholar 

  • Cowan I.R., Raven J.A., Hartung W. and Farquhar G.O. (1982) A possible role of abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism iIi leaves. Aust J Plant Physiol 9: 489–498

    Article  CAS  Google Scholar 

  • Cure J.D. and Acock B. (1986) Crop responses to carbon dioxide doubling: A literature survey. Agric For Meteorol 38: 127–145

    Article  Google Scholar 

  • Cure J.D. (1985) CO2 doubling response. A crop survey. In: Direct Effects of Increasing CO 2 on Vegetation. DOFJER-0238. US Dept ofFnergy, Carbon Dioxide Res Div, Washington DC, pp 99–116

    Google Scholar 

  • Cure J.D., Israel D.W. and Rufty T.W. Jr (1988) Nitrogen stress effects on growth and seed yield of nonnodulated soybean exposed to elevated carbon dioxide. Crop Sci 28: 671–677

    Article  Google Scholar 

  • Cure J.D., Rufty T.W. Jr and Israel D.W. (1989) Alterations in soybean leaf development and photosynthesis in a CO2-enriched atmosphere. Bot Gaz 150: 337–345

    Article  Google Scholar 

  • Delucia E.H., Sasek T.W. and Strain B.R. (1985) Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynth Res 7: 175–184

    Article  CAS  Google Scholar 

  • Dowton W.J.S., Bjorkman O. and Pike C.S. (1980) Consequences of increased atmospheric concentration of carbon dioxide for growth and photosynthesis of higher plants. In: (01 Pearman, ed) Carbon Dioxide dtul Climate. Australian Research, Australian Academy of Science, Canberra, pp 143–151

    Google Scholar 

  • Ehret O.L. and Jolliffe P.A. (1985) Leaf injury to bean plants grown in carbon dioxide enriched atmosphere. Can J Bot 63: 2015–2020

    CAS  Google Scholar 

  • EI-Sharkawy M.A. and Hesketh J.D. (1964) Effects of temperature and water deficit on leaf photosynthetic rates of differertt species. Crop Sci 9: 514–517

    Article  Google Scholar 

  • Farquhar G.O. and Sharkey T.O. (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33: 317–345

    Article  CAS  Google Scholar 

  • Fetcher N., Jaeger C.H., Strain B.R. and Sionit N. (1988) Long term elevation of atmospheric CO2 concentration and the carbon exchange rates of saplings of Pinus taeda L. and Liquidambar styracijlua L. Tree Physiol 4: 255–262

    Article  PubMed  Google Scholar 

  • Field C. and Mooney H.A. (1986) The photosynthesis nitrogen relationship in wild plants. In: (T A Givinish, ed) On the Economy of Plant Form and Function. Cambridge University Press, London, pp 25–55

    Google Scholar 

  • Finn G.A. and Brun W.A. (1982) Effect of atmospheric CO2 enrichment on growth, non-structural carbohydrate content and root nodule activity in soybean. Plant Physiol 69: 327–331

    Article  PubMed  CAS  Google Scholar 

  • Fischer R.A. and Aguilar M. (1976) Yield potential in a dwarf spring wheat and the effect of carbon dioxide fertilization. Agron J 68: 749–752

    Article  Google Scholar 

  • Ford M.A. and Thome G.N. (1967) Response of CO2 concentration on growth of sugarbeet, barley, kale and maize. Ann Bot 31: 629–644

    Google Scholar 

  • Gifford R.M. (1977) Growth pattern, carbon dioxide exchange and dry weight distribution in wheat growing under differing photosynthetic environments. Aust J Plant Physiol 4: 99–110

    Article  CAS  Google Scholar 

  • Gifford R.M. (1979) Growth and yield of CO2 enriched wheat under water limited conditions. Aust J Plant Physiol 6: 367–378

    Article  Google Scholar 

  • Goudriaan J. and de Ruiters H.E. (1983) Plant growth in response to CO2 enrichment, at two levels of nitrogen and phosphorus supply. 1. Dry matter, leaf area and development. Neth J Agric Sci 31: 157–169

    CAS  Google Scholar 

  • Green K. and Wright R. (1977) Field response of photosynthesis to CO2 enhancement in ponderosa pine. Ecology 58: 687–692

    Article  CAS  Google Scholar 

  • Gustafson S.W. (1984) Effects of CO2 enrichment during flowering and podfill on net photosynthesis, dry matter accumulation and yield of beans Phaseolus vulgaris L. Diss Abs Int 44(10): 2954

    Google Scholar 

  • Hardy R. and Havelka U.D. (1977) Possible routes to increase the conversion of solar energy to food and feed by grain legumes and cereal grains (crop production) In: (MA Miyachi, S San Pietro Pieto and A Tamura, eds) Biological Solar.Energy Conversion. Academic Press, London, New York:, pp 299–322

    Google Scholar 

  • Havelka U.D., Wittenbach V.A. and Boyle M.G. (1984a) CO2 enrichment effects on wheat yield and physiology. Crop Sci 24: 1163–1168

    Article  CAS  Google Scholar 

  • Havelka U.D., Ackerson R.C., Boyle M.G. and Wittenbach V.A. (1984b) CO2 enrichment effects on soybean physiology. I. Effects of long-tenn CO2 exposure. Crop Sci 24: 1146–1150

    Article  CAS  Google Scholar 

  • Herold A. (1980) Regulation of photosynthesis by sink activity—The missing link. New Phytol 86: 131–144

    Article  CAS  Google Scholar 

  • Hesketh J.D. and Hellmers H. (1973) Floral initiation in your plant species growing in CO2 enriched air. Environ Control Biol 111: 51–53

    Article  Google Scholar 

  • Hicklenton P.R. and Jolliffe P.A. (1978) Effects of greenhouse CO2 enrichment on the yield and photosynthetic physiology of tomato plants. Can J Plant Sci 58: 801–817

    Article  CAS  Google Scholar 

  • Hicklenton P.R. and Jolliffe P.A. (1980) Carbon dioxide and flowering in Pharbits nil Choisy. Plant Physiol 66: 13–17

    Article  PubMed  CAS  Google Scholar 

  • Ho L.C. (1977) Effects of CO2 enrichment on the rates of photosynthesis and translocation of tomato leaves. Ann Appl Biol 87: 191–200

    Article  CAS  Google Scholar 

  • Hocking P.J. and Meyer C.P. (1985) Responses of Noogoora Burr (Xanthium occidentale Beno!) to nitrogen supply and carbon dioxide enrichment. Ann Biol (London) 55: 835–844

    CAS  Google Scholar 

  • Houghton I.T., Jenkins G.J. and Ephranuns J.J. (1990) Editors Climate change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge pp 26

    Google Scholar 

  • Huber S.C., Rogers H. and Israel D.W. (1984) Effects of CO2 enrichment on photosynthesis and photosynthate partitioning is soybean (Glycine max) leaves. Physiol Plant 62: 95–101

    Article  CAS  Google Scholar 

  • Idso S.B., Kimball B.A. and Mauney J.R. (1987) Atmospheric CO2 enrichment effects on cotton midday foliage temperature: Implications for plant water use and crop yield. Agron J 79: 667–672

    Article  Google Scholar 

  • Jones P., Allen L.H. Jr, Jones J.W. and Valle R. (1985) Photosynthesis and transpiration responses of soybean canopies to shoo and long tenn CO2 treatments. Agron J 77: 119–126

    Article  CAS  Google Scholar 

  • Jurik T.W., Weber J.A. and Gates O.M. (1984) Shon tenn effects of CO2 on gas exchange of leaves of bigtooth aspen (Populus grandidentata) in the field. Plant Physiol 75: 1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Kimball B.A. (1983) Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agron J 75: 779–788

    Article  Google Scholar 

  • Kimball B.A. (198S) Adaptation of vegetation and management practices to a higher carbon dioxide world. In: (BR Strain and JD Cure, eds) Effects of Increasing Carbon Dioxide on Vegetation, US Department of Energy, Washington DC, pp 185–204

    Google Scholar 

  • Kimball B.A. (1986) Influence of elevated CO2 On crop yield. In: (HZ Enoch and BA Kimball, eds) Carbon Dioxide Enrichment of Green House Crops, Vol 2, Physiology Yield and Economics, CRC Press, Boca Raton, Florida, pp 105–115

    Google Scholar 

  • Kramer P.J. (1981) Carbon dioxide concentration, photosynthesis and dry matter production. Bioscience 31: 29–33

    Article  CAS  Google Scholar 

  • Kriedemann P.E. and Wong S.C. (1984) Growth response and photosynthetic adaptation to carbon dioxide: Comparative behaviour in some C3 species. In: (C sybesma, ed) Advances in Photosynthetic Research, Vol IV, Martinus Nijhoff/Dr W Junk Publishers, The Hague, Boston, Lancaster, pp 209–212

    Google Scholar 

  • Ku S.B. and Edwards G.E. (1977) Oxygen inhibition of photosynthesis. I. Temperature dependence and relation to O2/CO2 solubility ratio. Plant Physiol 59: 986–990

    Article  PubMed  CAS  Google Scholar 

  • Labate C.A. and Leegood R.C. (1988) Limitation of photosynthesis by changes in temperature. Factors affecting the response of carbon dioxide assimilation to temperature in barley leaves. Planta 168: 84–93

    Google Scholar 

  • Lawlor D.W. (1991) Response of plants to elevated carbon dioxide: The role of photosynthesis, sink demand ad environmental stress. In: (YP Abrol, PN Wattal, A Gnanam, Govindjee, DR Ort and AH Teramura, eds) Impact of Global Climatic Changes on Photosynthesis and Plant Productivity. Proceedings: Indo US Workshop, New Delhi. Oxford & IBH Publishing CO Pvt Ltd, New Delhi, pp 431–446

    Google Scholar 

  • Lee R.B. and Whittingham C.P. (1974) The influence of partial pressures in tomato leaf. J Exp Bot 25: 277–287

    Article  CAS  Google Scholar 

  • Lorimer G.H. (1981) The carboxylation and oxygenation of ribulose-1, 5-bisphosphate: The primary event in photosynthesis and photorespiration. Annu Rev Plant Physiol 32: 379–384

    Article  Google Scholar 

  • Madore M. and Grodzinski B. (1985) Effects of CO2 enrichment on growth and photoassimilate on transport in dwarf cucumber (Cucumus sativus I). J Plant Physiol 121: 51–71

    Article  Google Scholar 

  • Madsen E. (1968) Effects of CO2 concentration on the accumulation of starch and sugar in tomato leaves. Physiol Plant 21: 168–175

    Article  CAS  Google Scholar 

  • Madsen E. (1975) Effects of CO2 enrichment on growth, development, fruit production and fruit quality in tomato from a physiological point of view. In: (N de BiiderliRg and P Chouard, eds) Phytotrons in Horticultural Research, Goulhier-Villars, Paris, pp 318–330

    Google Scholar 

  • Mauney J.R., Fry K.E. and Guinn G. (1978) Relationship of photosynthetic rate to growth and fruiting of cotton, soybean, sorghum and sunflower. Crop Sci 18: 259–263

    Article  CAS  Google Scholar 

  • Mauney J.R., Guinn G., Fry K.E. and Hesketh J.D. (1979) Correlation of photosynthetic carbon dioxide uptake and carbohydrate accumulation in cotton, soybean, sorghum and sunflower. Photosynthetica 13: 260–266

    Google Scholar 

  • Morison J.I.L. (1985a) Intercellular CO2 concentration and stomatal response to CO2. In: (E Zeiger, I Cowan and GD Farquhar, eds). Stomatal Function, Stanford University Press, Stanford, pp 229–252

    Google Scholar 

  • Morison J.I.L. (1985b) Sensitivity of stomata and water-use efficiency to high CO2. Plant Cell and Environ 8: 467–474

    Article  Google Scholar 

  • Morison J.I.L. and Gifford R.M. (1983) Stomatal sensitivity to carbon dioxide and humidity-A comparison of two C3 and two C4 grass species. Plant Physiol 71: 789–796

    Article  PubMed  CAS  Google Scholar 

  • Nafziger E.D. and Koller H.R. (1976) Influence of leaf starch concentration on CO2 assimilation in soybean. Plant Physiol 57: 560–563

    Article  PubMed  CAS  Google Scholar 

  • Neales T.F. and Nicholls A.O. (1978) Growth responses of young wheat plants to a range of ambient CO2 levels. Aust J Plant Physiol 5: 45–59

    Article  CAS  Google Scholar 

  • Newton P. (1965) Growth of Cucumis sativus variety Butcher's Disease Resister with two concentrations of carbon dioxide. Ann Appl Bioi 56: 55–64

    Article  Google Scholar 

  • Ogren W.L. (1977) Increasing carbon fIXation by crop plants. In: (G Akoyunoglou, ed) Fourth International Congress on Photosynthesis, Balaban Int Sci services, Philadelphia, pp 721–733

    Google Scholar 

  • Osmond C.B. and Bjorkman O. (1973) Pathways of CO2 fixation in the CAM plant Kalanchoe diagremontiana II. Effects of O2 and CO2 concentration on light and dark fixation. Aust J Plant Physiol 2: 155–162

    Google Scholar 

  • Paez A., Helhners H. and Strain B.R. (1980) CO2 effects on apical dominance in Pisum sativum. Physiol Plant 50: 43–46

    Article  CAS  Google Scholar 

  • Paez A., Hellmers H. and Strain B.R. (1983) CO2 enrichment, drought stress and growth of alaska pea plant (Pisum sativum). Physiol Plant 58: 161–165

    Article  Google Scholar 

  • Paez A., Hellmers H. and Strain B.R. (1984) Carbon dioxide enrichment and water stress interaction on growth of two tomato cultivars. J Agric Sci Cam 102: 687–693

    Article  Google Scholar 

  • Pallas J.E. Jr (1965) Transpiration and stomatal opening with changes in carbon dioxide content of air. Science 147: 171–173

    Article  PubMed  CAS  Google Scholar 

  • Patterson D.T. and Flint E.P. (1980) Potential effects of global atmospheric CO2 enrichment on the growth and competitiveness of C3 and C4 weed and crop plants. Weed Sci 28: 71–75

    CAS  Google Scholar 

  • Pearcy R.W. and Bjorkman O. (1983) Physiological effects. In: (ER Lemon, ed). CO 2 and Plant: The response of plant to Rising Level of Atmospheric Caron Dioxide. Westview Press, Boulder, Colorado, pp 65–105

    Google Scholar 

  • Peel M.M. (1986) Acclimation to high CO2 in monoecious cucumbers. I Vegetative and reproduction growth. Plant Physiol 80: 59–62

    Article  Google Scholar 

  • Peel M.M., Huber S.C. and Patterson D.T. (1986) Acclimation to high CO2 in monoecious cucumbers. II Carbon exchange rates, enzyme activities and starch and nutrient concentrations. Plant Physiol 80: 63–67

    Article  Google Scholar 

  • Perchorowicz I.T. and Jensen R.G. (1983) Photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. Regulation by CO2 and O2. Plant Physiol 71: 955–960

    Article  PubMed  CAS  Google Scholar 

  • Pharr O.M., Huber S.C. and Sox H.N. (1985) Leaf carbohydrate status and enzymes of translocate synthesis in fruiting and vegetative plants of Cucumis sativus L. Plant Physiol 77: 104–108

    Article  PubMed  CAS  Google Scholar 

  • Porter M.A. and Grodzinski B. (1984) Acclimation to high CO2 in bean. Carbonic anhydrase and ribulose biophosphate carboxylase. Plant Physiol 74: 413–416

    Article  PubMed  CAS  Google Scholar 

  • Portis A.R. Jr, Salvucci ME and Ogren WL (1986) Activation of ribulose bisphosphate concentrations by rubisco activase. Plant Physiol 82: 967–971

    Google Scholar 

  • Potvin C. and Strain B.R. (1985) Effects of CO2 enrichment and temperature on growth in two C4 weeds, Echinochloa crusgalli and Eleusine indica. Can Bot 63: 1495–1497

    Article  Google Scholar 

  • Radin J.W. and Ackerson R.C. (1981) Water relations of cotton plants under nitrogen deficiency. III Stomatal conductance, photosynthesis, and abscisic acid accumulation during drought. Plant Physiol 67: 115–119

    Article  PubMed  CAS  Google Scholar 

  • Radin J.W., Kimball B.A., Hendrix O.L. and Mauney J.R. (1987) Photosynthesis of cotton plants exposed to elevated levels of carbon dioxide in the field. Photosynthesis Research 12: 191–203

    Article  Google Scholar 

  • Radin J.W., Hartung W., Kimball B.A. and Mauney J.R. (1988) Correlation of stomatal conductance with photosynthetic capacity of cotton only in a CO2-enriched atmosphere: Mediation by abscisic acid? Plant Physiol 88: 1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Raper C.D. Jr and Peedin G.F. (1978) Photosynthetic rate during steady-state growth as influenced by carbon dioxide concentration. Bot Gaz 139: 147–149

    Article  CAS  Google Scholar 

  • Raschke (1975) Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. Planta 125: 243–259

    Article  CAS  Google Scholar 

  • Raschke (1979) Movement of stomata. In: (W Haupt and ME Feinlab, eds) Encyclopedia Plant Physiology New Series 7, pp 383–441

    Google Scholar 

  • Riechers G.O. and Strain B.R. (1988) Growth of blue grama (Boutelous gracilis) in response to atmospheric carbon dioxide enrichment. Can Bot 66: 1570–1573

    Article  Google Scholar 

  • Rogers H.H., Bingham G.E., Cure J.D., Smith J.M. and Surano K.A. (1983) Response of selected plant species to elevated carbon dioxide in the field. Environ Qual 12: 569–574

    Article  CAS  Google Scholar 

  • Rogers H.H., Cure J.D. and Smith J.M. (1986) Soybean growth and yield response to elevated carbon dioxide. Agric Ecosyst Environ 16: 113–128

    Article  Google Scholar 

  • Sage R.F. and Pearcy R.W. (1987) The nitrogen use efficiency of C3 and C4 plants. I Leaf nitrogen, growth and biomass partitioning in Chenopoduim album(L) and Amaranthus retraflexus (L). Plant Physiol 84: 954–958

    Article  PubMed  CAS  Google Scholar 

  • Sage R.F. and Sharkey T.O. (1987) The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants. Plant Physiol 84: 658–664

    Article  PubMed  CAS  Google Scholar 

  • Sage R.F., Pearcy R.W. and Seemann J.R. (1987) The nitrogen use efficiency of C3 and C4 plants. ill Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium 'album L and Amaranthus retroflexus L. Plant Physiol 85: 355–359

    Article  PubMed  CAS  Google Scholar 

  • Sage R.F., Sharkey T.D. and Seemann J.R. (1988) The in vivo response of the ribulose-I, 5 bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L. Planta 174: 407–416

    Article  CAS  Google Scholar 

  • Sage R.F., Sharkey T.D. and Seemann J.R. (1989) Acclimation of photosynthesis to elevated CO2 of five C3 species. Plant Physiol 89: 590–596

    Article  PubMed  CAS  Google Scholar 

  • Salvucci M.E., Portis A.R. Jr and Ogren W.L. (1986) Light and CO2 response of ribulose-1, 5 bisphosphate carboxylase oxygenase activation in Arabidopsis leaves. Plant Physiol 80: 655–659

    Article  PubMed  CAS  Google Scholar 

  • Sasek T.W. and Strain B.R. (1989) Effects of carbon dioxide on the expansion and size of Kurzu (Pueraria lobata) leaves. Weed Sci 76: 23–28

    Google Scholar 

  • Sasek T.W., Delucia E.H. and Strain B.R. (1985) Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO2 concentrations. Plant Physiol 78: 619–622

    Article  PubMed  CAS  Google Scholar 

  • Sengupta U.K. (1988) Effect of increasing CO2 concentration on photosynthesis and photorespiration in wheat leaf. Curr Sci 57: 145–146

    CAS  Google Scholar 

  • Sharkey T.D. and Badger M.R. (1984) Factors limiting photosynthesis as determined from gas exchange characteristics and metabolite pOOl size. In: (C Sybesma, ed) Advances in Photosynthesis Research, Vol 7, Martinus Nijhoff Dr W Junk Publishers, The Hague, pp 325–328

    Google Scholar 

  • Sharkey T.D., J.A. Berry and Sage R.F. (1988) Regulation of photosynthetic electron transport in Phaseolus vulgaris L. as determined by room temperature chlorophylla a fluorescence. Planta 176: 415–424

    Article  CAS  Google Scholar 

  • Sharma A. (1986) Studies on relationship of carbon dioxide assimilation and translocation of assimilates in mungbean. PhD Thesis, PG School, Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Sharma A. and Sengupta U.K. (1990) Carbon dioxide enrichment effects on photosynthesis and related enzymes in Vigna radiata L (Wilczek). Indian J Plant Physiol 33: 340–346

    Google Scholar 

  • Sionit N. and Patterson D.T. (1985) Response of C4 grasses to atmospheric CO2 enrichment. II Effects of water stress. Crop Sci 25: 533–537

    Article  Google Scholar 

  • Sionit N. Hellmers H. and Strain B.R. (1980) Growth and yield of wheat under CO2 enrichment and water stress. Crop Sci 20: 687–690

    Article  Google Scholar 

  • Sionit N. Strain B.R., Hellmers H. and Kramer P.J. (1981a) Effects of atmospheric CO2 concentrations and water stress on water relations of wheat. Bot Gaz 142: 191–196

    Article  Google Scholar 

  • Sionit N. Strain B.R. and Beckford R.A. (l981b) Environmental control on the growth and yield of ckra. I Effect of temperature and CO2 enrichment at cool temperature. Crop Sci 21: 885–888

    Google Scholar 

  • Szarek S.R., Holthe P.A. and Ting I.P. (1987) Minor physiological response to elevated CO2 by the CAM plant Agava vilmoriniana. Plant Physiol 83: 938–940

    Article  PubMed  CAS  Google Scholar 

  • Thomas J.D. and Hill G.R. (1949) Photosynthesis under field conditions. In: (J Franck and WE Loomis. eds). Photosynthesis in Plants. Iowa State College Press. Ames. pp 19–52

    Google Scholar 

  • Thomas J.F. Raper C.D. Jr. Anderson C.E. and Dowas R.J. (1975) Growth of young tobacco plants as affected by carbon dioxide and nutrient variables. Agron 67: 685–689

    Article  CAS  Google Scholar 

  • Ting I. and Loomis W.E. (1963) Diffusion through stomates Amer J Bot 30: 866–872

    Article  Google Scholar 

  • Tinus R.W. (1972) CO2 enriched atmosphere speeds growth of ponderosa pine and blue spruce seedlings. Tree Plant Notes 23: 12–15

    Google Scholar 

  • Tolbert N.E. and Zelitch I. (1983) Carbon metabolism. In: (ER Lemon. ed). CO 2 and Plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. Westview Press, Boulder, Colorado. pp 21–64

    Google Scholar 

  • Van Bavel M.C.H. (1974) Antitransparent action of carbon dioxide on intact sorghum plants. Crop Sci 14: 208–212

    Article  Google Scholar 

  • von Cammerer S. and Edmondson D.L. (1986) Relationship between steady state gas exchange. in vivo ribulose bisphosphate caroxylase activity and some carbon reduction cycle intermediates in Raphanus sativus. Aust J Plant Physiol 13: 669–688

    Article  Google Scholar 

  • von Cammerer S. and Farquhar G.O. (1984) Effects of partial defoliation. changes of irradiance during growth. short term water stress and growth at enhanced P (C02) on the photosynthetic capacity of leaves of Phaseolus vulgaris L. Planta 160: 320–329

    Article  Google Scholar 

  • Vu J.C.V. Allen L.H. and Bowes G. (1983) Effects of light and elevated atmospheric CO2 on the ribulose bisphosphate carboxylase activity and ribulose bisphosphate level of soybean leaves. Plant Physiol 73: 729–734

    Article  PubMed  CAS  Google Scholar 

  • Vu J.C.V. Allen L.H. and Bowes G. (1989) Leaf ultrastructure. carbohydrates and pro~ein ofsoybeans grown under CO2 enrichment. Environ Exp Bot 29: 141–147

    Article  CAS  Google Scholar 

  • Wardlaw I.F. (1982) Assimilate movement in Lolium and Sorghumleaves. III Carbon dioxide concentration effects on the metabolism and translocation of photosynthates. Aust Plant Physiol 9: 705–715

    Article  Google Scholar 

  • Waritt B. Landsberg J.J. and Thorpe M.R. (1980) Responses of apple leaf stomata to environmental factors. Plant Cell Environ 3: 13–22

    Google Scholar 

  • Warren W.J. (1966) An analysis of plant growth and its control in arctic environments. Ann Bot (London) 30: 383–402

    Google Scholar 

  • Warwick R.A. and Gifford R.M. (1985) Climatic change and agriculture: Assessing the reponse of global agriculture to increasing CO2 In: UNEP/WMO/lCSU-SCOPE. International Assessment of the Impact of an Increased Anthropogenic Input of Carbon Dioxide on the Environment. Chap 8. pp 1–24

    Google Scholar 

  • Wong S.C. (1979) Elevated atmospheric partial pressure of CO2 and plant growth. I Interactions of nitrogen nutrition and photosynthetic capacity in C2 and C3 plants. Oecologia 44: 68–74

    Article  Google Scholar 

  • Wong S.C. (1990) Elevated atmospheric partial pressures of CO2 and plant growth. II Non structural carbohydrate content in cotton plants and its effects on growth parameters. Photosynth Res 23: 171–180

    Article  CAS  Google Scholar 

  • Wray S.M. and Strain B.R. (1986) Response of two old field perennials to interactions of CO2 enrichment and drought stress. Ame J Bot 73: 1486–1491

    Article  Google Scholar 

  • Wulff R. and Strain B.R. (1982) Effects of caron dioxide enrichment of growth and photosynthesis in Desmodium paniculatum. Can Bot 73: 1486–1491

    Google Scholar 

  • Yelle S., Benson R.C., Trudel M.C. Jr and Gosselin A. (l989a) Acclimation of two tomato species to high atmospheric CO2 II. Ribulose-I, 5-bisphosphate carboxylase oxygenase and phosphoenolpyruvate carboxylase. Plant Physiol 90: 1473–1477

    Google Scholar 

  • Yelle S., Beeson R.C. Jr, Trudel M.J. and Gosselin A. (1989b) Acclimation of two tomato species to high atmospheric CO2, I Sugar and starch concentration. Plant Physiol 90: 1465–1472

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sengupta, U.K., Sharma, A. (1993). Carbon Dioxide Enrichment Effects on Photosynthesis and Plant Growth. In: Abrol, Y.P., Mohanty, P., Govindjee (eds) Photosynthesis: Photoreactions to Plant Productivity. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2708-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2708-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5200-9

  • Online ISBN: 978-94-011-2708-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics