Skip to main content

Photosynthetic Characteristics of Fruiting Structures of Cultivated Crops

  • Chapter
Photosynthesis: Photoreactions to Plant Productivity

Abstract

Yield in crop plants is built through the photosynthetic activity of leaves, stem and fruiting structures. However, the contribution of these structures varies in different crops and is influenced by factors such as moisture, nutrition, and genotype. In cereals, net photosynthesis in reproductive organs is relatively high and probably contributes as much as 50-75% of the photosynthates to developing grains. However, in legumes, the reproductive structures are generally incapable of net photosynthesis. In rapeseed, virtually 100% of the seed dry matter comes from photosynthetic CO2 assimilation of the pod. Studies on the activities of some key enzymes of the photosynthetic carbon reduction (PCR) cycle and C4 metabolism, rates of 14CO2 fixation in light and dark, and initial products of photosynthetic 14CO2 fixation conducted with fruiting structures of various crops indicated that compared to activities of ribulose-l ,5-bisphosphate carboxylase (RuBPcase) and other photosynthetic carbon reduction (PCR) cycle enzymes, the activities of phosphoenol pyruvate (PEP) carboxylase and other enzymes of C4 metabolism are generally much higher in fruiting structure than in the leaf. Short-term assimilation of 14CO2 by illuminated fruiting structures produces malate as the major labelled product with less labelling in 3-phosphoglyceric acid (3-PGA), whereas the leaf shows major incorporation into 3-PGA indicating that the fruiting structures use PEP carboxylase mainly to recapture the respired or photorespired CO2, However, the pod-wall of Brassica seems to be an exception, and assimilates CO2 via the reactions of the PCR cycle. Based on the information reviewed here, a model depicting carbon assimilation in fruiting structures is proposed. Further, it is argued that fruit photosynthesis does not resemble any of the well-characterized categories of photosynthesis, namely, C3, C4 or crassulacean acid matabolism (CAM). It appears that fruit photosynthesis has an intermediate status between C3, non-autotrophic tissue and C CAM photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen E.J., Morgan D.G. and Ridgman W.I. (1971) A physiological analysis of the growth of oilseed rape. J Agri Sci 77: 339–341

    Article  Google Scholar 

  • Allentoff N., Phillips W.R. and lohnston F.B. (1954) A 14C study of carbon dioxide fixation in the apple. J Food Sci Agric 5: 231–238

    Article  CAS  Google Scholar 

  • Allison J.C.S. and Watson O.J. (1966) The production and distribution of dry matter in maize after flowering. Ann Bot 30: 365–381

    Google Scholar 

  • Aoyagi K. and Bassham J.A. (1984) Pyruvate orthophosphate dikinase of C3 seeds and leaves as compared to the enzyme from maize. Plant Physiol 75: 387–392

    Article  PubMed  CAS  Google Scholar 

  • Aranus J.L., Alegre L., Tapia L. and Calafell R. (1986) Relationship between leaf structure and gas exchange in wheat leaves at different insertion levels. J Exp Bot 37: 1323–1333

    Article  Google Scholar 

  • Atkins C.A., Kuo I., Pale I.S., Ainn A.M. and Steele T.W. (1977) Photosynthetic pod-wall of pea (Pisum sativum L.). Plant Physiol 60: 779–786

    Article  PubMed  CAS  Google Scholar 

  • Bain J.M. and Mercer FV (1964) Organization resistance and the respiration climacteric. Aust J Biol Sci 17: 78–85

    Google Scholar 

  • Bean R.C. and Todd G.W. (1960) Photosynthesis and respiration in developing fruits. I I'CO2 uptake by young oranges in light and dark. Plant Physiol 35: 425–429

    Article  PubMed  CAS  Google Scholar 

  • Bean R.C., Porter G.O. and Barr B.K. (1963) Photosynthesis and respiration in developing fruits. III Variations in photosynthetic capacities during colour change in citrus. Plant Physiol 38: 285–290

    Article  PubMed  CAS  Google Scholar 

  • Black C.C. (1973) Photosynthetic carbon fixation in relation to net CO2 uptake. Annu Rev Plant Physiol 24: 253–286

    Article  CAS  Google Scholar 

  • Blanke M.M. (1985) C4/JCAM photosynthese-enzyme beider CO2 refixierung der Apfelfrucht. Dissertation, Institut fur Obstbau, Universitat Bonn.

    Google Scholar 

  • Blanke M.M. (1986) Comparative SEM study of stomata on developing quince, apple, grape and tomato fruit. Angewandte Botanik 68: 209–214

    Google Scholar 

  • Blanke M.M. (1987) Comparative SEM study of stomata and surface morphology in apple. Angewandte Botanik 61: 433–438

    Google Scholar 

  • Blanke M.M. (1988a) Bioenergetics of apple fruit respiration. Plant Physiol Biochem 26: 245–252

    Google Scholar 

  • Blanke M.M. (1988b) Wieviel CO2 veratmet eine apfel frucht wahrend ihrer entwickiung. Erwerbsobstbau 30: 68–70

    Google Scholar 

  • Blanke M.M. (1988c) Fruit photosynthesis In: (Cl Wright, ed) Manipulation of Fruiting, Proc. 47 Easter School, University of Nottingham, Sutton Bonington, Loughborough, UK.

    Google Scholar 

  • Blanke M.M. and Lenz F. (1985) Spaltoffnungen, fruchtoberflache und transpiration wachsender apfelfruchte der sorte golden delicious. Erwerbsobstbau 27: 139–143

    Google Scholar 

  • Blanke M.M. and Lenz F. (1989) Fruit photosynthesis. Plant Cell Environ 12: 31–46

    Article  CAS  Google Scholar 

  • Blanke M.M. and Notton B.A. (1991) Kinetics and physiological significance of photosynthetic PEP carboxylase in avocado fruit. J Plant Physiol 137: 553–558

    Article  CAS  Google Scholar 

  • Blanke M.M., Priestley C.A. and Trecame K.J. (1982) Carbon conservation by apple fruits. East Mailing Research Station. Annual Report 1981, pp 146

    Google Scholar 

  • Blanke M.M., Pring R.V. and Goodenough P.W. (1985) Stomatal and cuticular respiration in fruit with C, photosynthesis pathways. Long Ashton Research Station. Annual Report, pp 136–137

    Google Scholar 

  • Blanke M.M., Notton B.A. and Huckiesby D.P. (1986) Physical and Kinetic properties of photosynthetic PEP carboxylase in developing apple fruit. Phytochemistry 25: 601–606

    Article  CAS  Google Scholar 

  • Blanke M.M., Hucklesby D.P., Notton B.A. and Lenz F. (1987a) Utilization of bicarbonate by apple fruit PEP carboxylase. Phytochemistry 26: 2475–2476

    Article  CAS  Google Scholar 

  • Blanke M.M., Huckiesby D.P. and Notton B.A. (1987b) PEP carboxylase in developing apple fruit. J Plant Physiol 129: 310–325

    Article  Google Scholar 

  • Blanke M.M., Huckiesby D.P. and Notton B.A (1988) Distribution and physiological significance of PEP carboxylase in kiwi aubergine and apple fruit. Hort Sci 23: 65–70

    Google Scholar 

  • Bogin E. and Wallace A. (1966) CO2 fixation in preparations of Tunisian Sweet Lemon and Eureka Lemon fruits. J Amer Soc Hort Sci 88: 298–307

    CAS  Google Scholar 

  • Bravdo B.A., Palgi A., Lurie S. and Frenkel C. (1977) Changing ribulose diphospbate~arboxylase/oxygenase activity in ripening tomato fruit. Plant Physiol 60: 309–312

    Article  PubMed  CAS  Google Scholar 

  • Buffer G. (1986) Ethylene promoted conversion of l-amino cyclopropane-I-carboxylic acid to ethylene in peel of apple at various stages of fruit development. Plant Physiol 80: 539–543

    Article  Google Scholar 

  • Burg S.P. and Burg E.A. (1965) Gas exchange in fruits. Physiol Plant 18: 870–884

    Article  CAS  Google Scholar 

  • Burg S.P. and Burg E.A. (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol 42: 144–152

    Article  PubMed  CAS  Google Scholar 

  • Buttrose M.S. and May L.H. (1959) Physiology of cereal grain I The source of carbon for the developing barley kernel.Aust J Biol Sci 12: 40–52

    Google Scholar 

  • Caley C.Y., Duffus C.M. and Jeffcoat B. (1990) Photosynthesis in the pericarp of developing wheat of grains. J Exp Bot 41: 303–307

    Google Scholar 

  • Clark R.B. and Wallace A. (1963) Dark CO2 fIXation in organic acid synthesis and accumulation in citrus fruit vescicles. J Amer Soc Hort Sci 83: 322–332

    CAS  Google Scholar 

  • Clark R.B., Wallace A. and Mueller R.T. (1961) Dark CO2 fixation in avocado roots, leaves and fruits. J Arner Soc Hort Sci 78: 161–168.

    CAS  Google Scholar 

  • Clijsters H. (l969a) On the effect of light on CO2 exchange in developing apple fruits. Prog Photosynthesis Res 1: 388–395

    Google Scholar 

  • Clijsters H. (l969b) On the photosynthetic activity of developing fruits. Qualitas Plantarum Materiae Vegetale 19: 129–140

    Google Scholar 

  • Clijsters H. (1975) Relation possible entre I' activite photosynthetique de Ia pomme et sa maturation. Co/loques Internotiaux CNRS 238: 41–47

    Google Scholar 

  • Cordes D. (1988) Einfluss von Entblatterung auf Kohlen hydrat verteilung und CO2-gasweebsel bei apfeln. Hort Sci 23: 71–78

    Google Scholar 

  • Cordes D. and Blanke M.M. (1987) Hypodermal and core cbloroplasts of developing apple fruit. Long Ashton Research Station, Annual Report, 1985

    Google Scholar 

  • Crookston R.K., Toole J.O. and Ojbun J.L. (1974) Characterization of the bean pod as a photosynthetic organ.Crop Sci 14: 708–712

    Article  Google Scholar 

  • Das S., Sood D.R., Sawbney S.K. and Singh R. (1986) Properties of NADP+-malic enzyme from pod-walls of chickpea (Cicer arietinum). Physiol Plant 68: 308–314 308-314

    Article  CAS  Google Scholar 

  • De Barsy T. (1976) Le fruit de la naissance a la senescence. La Fruit Belge 373: 4–10

    Google Scholar 

  • Dbawan R.S. and Singh R. (1983) Photosynthetic rates of leaves and pods of chickpea cultivars differing in seed weight. Indian J Plant Physiol 26: 276–284

    Google Scholar 

  • Dhillon S., Suneja S.K., Sawbney S.K. and Singh R (1985) properties of NADP+-malic enzyme from glumes of developing wheat grains. Phytochemistry 24: 1657-1663

    Google Scholar 

  • Downs R.J., iegel-Mann H.W., Butler W.L. and Hendricks S.B. (1965) Photoreceptive pigments for anthocyanin synthesis in apple skin. Nature 205: 909–910

    Article  CAS  Google Scholar 

  • Duffus C.M. and Cocbrape M.P. (1982) Carbohydrate metabolism during cereal grain development. In (AA Khan ed) The Physiology and Biochemistry of Seed Development, Dormancy and Germination. Elsevier Biomedical Press, Amsterdam, pp 43–66

    Google Scholar 

  • Duffus C.M., Nutbeam A.R. and Scragg P.A. (1985) Photosynthesis in the immature cereal pericarp in relation to grain growth. In: (B Jeffcoat, AF Hawkins and AD Stead, eds) Regulation of Sources and Sinks in Crop Plants, Monograph No. 12, British Plant Growth Regulator Group, Long Ashton, England, pp 243–256

    Google Scholar 

  • Duffus C.M. and Watson P.A. (1988) Carbon dioxide fixation by detached cereal caryopses. Plant Physiol 87: 504–509

    Article  PubMed  Google Scholar 

  • Edwards G. and Walker D.A. (1983) Induction. In: C3, C4 Mechanisms and Cellular and Environmental Regulation of Photosynthesis. Blackwell Scientific Publications, Oxford, pp 156–200

    Google Scholar 

  • Enyi B.A.C. (1962). The contribution of different organs to grain weight in upland and swamp rice. Ann Bot 26: 529–531

    Google Scholar 

  • Evans L.T. and Rawson H.M. (1970) Photosynthesis and respiration by the flag leaf and component of the ear during grain development in wheat. Aust J Biol Sci 23: 245–254

    Google Scholar 

  • Fischer K.S. and Wilson G.L. (1971) Studies of grain production in Sorghum vulgare. II Sites responsible for grain dry matter production during the post anthesis period. Aust J Agric Res 22: 39–47

    Article  Google Scholar 

  • Flinn A.M. and Pate J.S. (1970) A quantitative study of carbon-transfer from pod and subtending leaf to the ripening seeds of the field pea. J Exp Bot 21: 71–82

    Article  CAS  Google Scholar 

  • Flinn A.M., Atkins C.A. and Pate J.S. (1977) Significance of photosynthetic and respiratory exchanges in the carbon economy of the developing pea fruit. Plant Physiol 60: 412–418

    Article  PubMed  CAS  Google Scholar 

  • Frey-Wyssling A. and Buttrose M.S. (1959) Photosynthesis in the ear of barley. Nature 184: 2031–2032

    Article  CAS  Google Scholar 

  • Goldsworthy P.R. (1970) The source of the assimilate during grain development in tall and short sorghum. J Agric Sci 74: 525–531

    Google Scholar 

  • Goodheer J.C. (1979) Carotenoids in the photosynthetic apparatus. Berichte der Deutschen Botanischen Gesell Schaft 92: 427–436

    Google Scholar 

  • Gross J., Zachariae A., Lenz F. and Eckhardt G. (1978) Carotenoid changes in the peel of the golden delicious apple during ripening and storage. Z Pjlanzenphysiol 89: 321–332

    CAS  Google Scholar 

  • Gupta V.K. and Singh R. (1988) Partial purification and characterization of NADP+-isocitrate dehydrogenase from immature pod-walls of chickpea. Plant Physiol 87: 741–744

    Article  PubMed  CAS  Google Scholar 

  • Gupta V.K. and Singh R. (1989) Properties of pyruvate kinase from immature pod-wall of chickpea. Plant Physiol Biochem 27: 703–711

    CAS  Google Scholar 

  • Gupta V.K. and Singh R. (1990) Properties of NADP+-malate dehydrogenase from immature pod-wall of chickpea. Plant Physiol Biochem. 28: 671–678

    CAS  Google Scholar 

  • Hall E.G., Heulin F.E., Hackney F.M.V. and Bain J.M. (1955) Les exchanges gazeuz dans les pommes Granny Smith. Fruits 10: 149–155

    CAS  Google Scholar 

  • Hansen P. (1969) 14C studies on apple trees. Physiol Plant 22: 186–198

    Article  Google Scholar 

  • Harvey O.M., Hedley C.L. and Kelly R.J. (1976) Photosynthetic and respiratory studies during pod and seed development in Pisum sativum L. Ann Bot 40: 993–1001

    CAS  Google Scholar 

  • Hedley C.L., Harvey O.M. and Kelly R.J. (1975) Role of PEP carboxylase during seed development in Pisum sativum. Nature 258: 352–354

    Article  CAS  Google Scholar 

  • Henze J. (l969a) Muglichkeiten zur Beein flussung der Fruchtatmung und-reifung bei kemobst. Hart Sci 2: 159–187

    Google Scholar 

  • Henze J. (l969b) Beziehungen Zwischen respiration und innerer Atmosphere bei CO2 empfrndliehen kemobstsorten. Qualitas Plantarum Materiae Vegetable 19: 229–242

    Google Scholar 

  • Huffaker R.C. and Wallace A. (1959) Oark fixation of CO2 in homogenates from citrus leaves, fruits and roots. J Amer Soc Hart Sci 74: 348–357

    CAS  Google Scholar 

  • Hulme A.C. Jones J.O. and Wooltorton L.S.C. (1963) The respiration climacteric in apple fruits. Proc Roy Soc Ser B 158: 514–535

    Article  Google Scholar 

  • Hulme A.C., Jones J.D. and Wooltorton L.S.C. (1967) The respiration climacteric in apple fruits: Some possible regulatory mechanisms. Phytochemistry 6: 1343–1351

    Article  Google Scholar 

  • Imaizumi N., Usuda H., Nakamoto H. and Ishihara K. (1990) Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles. Plant Cell Physiol 31: 835–842

    CAS  Google Scholar 

  • Jennings V.M. and Shibles R.M. (1968) Genotypic differences in photosynthetic contributions of plant parts to grain yield in oats. Crop Sci 8: 173–175

    Article  Google Scholar 

  • Jones H.G. (1981) CO2 exchange of developing apple fruits. J Exp Bot 32: 1203–1210

    Article  CAS  Google Scholar 

  • Jones H.G. (1983) Plants and Microclimate. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones H.G. and Higgs K.H. (1982) Surface conductance and water balance of developing apple fruits. J Exp Bot 33: 67–77

    Article  CAS  Google Scholar 

  • Jones J.D., Hulme A.C. and Wooltorton L.S.C. (1964) The respiration climacteric in apple fruits. New Phytologist 64: 158–167

    Article  Google Scholar 

  • Juniper B.E. and Jeffree C.E. (1983) Plant Surface. Edward Arnold, London

    Google Scholar 

  • Khanna-Chopra R. and Sinha S.K. (1974) Photosynthesis and photosynthetic enzymes in reprodcutive organs of some crop plants. Indian J Genet Plant Breed 34: 1041–1047

    Google Scholar 

  • Kidd F. and West C. (1925) The course of respiratory activity throughout the life of an apple. Reports of the Food Investment Board for 1924, London, PP 27–32

    Google Scholar 

  • Kidd F. and West C. (1947) A note on the assimilation of carbon dioxide by apple fruits after gathering. New Phytologist 46: 274–275

    Article  CAS  Google Scholar 

  • Kliewer W.M. and Smart R. (1988) Canopy manipulation for optimizing vine micro climate, crop yield and composition of grapes. In: (CJ Wright, ed) Manipulation of Fruiting Proc 47th Easter School, University of Nottingham Sutton Bonington, Loughborough.

    Google Scholar 

  • Kluge M. and Ting T.P. (1978) Crassulacean Acid Metabolism, Springer, Berlin

    Google Scholar 

  • Knee M. (1972) Anthocyanin, carotenoid and chlorophyll changes in the peel of Cox's orange pippin apples during ripening on and off the tree. J Exp Bot 23: 84–96

    Article  Google Scholar 

  • Knoppik D., Selinger H., Ziegler-Jons A. (1986) Differences between the flag leaf and the ear of a spring wheat cultivar with respect to the CO2 response of assimilation, respiration and stomatal conductance. Physiol Plant 68: 451–457

    Article  Google Scholar 

  • Kriedemann P. (1968) Observations on gas exchange in the developing Sultana berry. Aust J Biol Sci 21: 907–916

    CAS  Google Scholar 

  • Kurssanow A.L. (1934) Die photosynthese grunerfruchte und ihre abhangigkeit von der normalan tatigkeit der blatter. Planta 22: 240–250

    Article  Google Scholar 

  • Latzko E. and Kelly O.J. (1983) The many faceted function of PEP carboxylase in C3 plants. Physiol Vegetale 21: 805–815

    CAS  Google Scholar 

  • Laval-Martin D., Farineau J. and Diamond J. (1977) Light versus dark carbon metabolism in cherry tomato fruits. Plant Physiol 60: 872–876

    Article  PubMed  CAS  Google Scholar 

  • Lenz F. and Blanke M.M. (1983) Transpiration bei apfel fruchten. Erwerbsobstbau 25: 23–29

    Google Scholar 

  • Lenz F. and Noga G. (1982) Photosynthese und atmung bei apfelfruchten. Erwerbsobstbau 24: 198–200

    Google Scholar 

  • Leyhe A. (1987) Transpiration und CO2 gaswechsel von trauben in adhangigkeit von klimafaktoren und wasserversorgung. Dissertation Institut fur Obstbau, Universitat Bonn

    Google Scholar 

  • Leyhe A. (1988) CO2-aufnahme und abgabe sich entwickelnder trauben. Wein Wissenschaft 43: 67–73

    Google Scholar 

  • Luthra Y.P., Sheoran I.S. and Singh R. (1983) Photosynthetic rates and enzyme activities of leaves, developing seeds and pod-wall of pigeonpea. Photosynthetica 17: 210–215

    CAS  Google Scholar 

  • Marcellin P. (1975) Conditions physiques de la circulation des gaz respiratoires a traverse in masse des fruits et maturation. Colloques Internationaux CNRS 238: 241–251

    Google Scholar 

  • Meyer A.O., Kelly O.J. and Latzko E. (1982) Pyruvate orthophosphate dikinase from immature llrains of cereal grasses. Plant Physiol 69: 7–10

    Article  PubMed  CAS  Google Scholar 

  • Noga G. and Lenz F. (1982) Einfluss von verschiedenen klimajaktoren auf den CO2-gaswechsel von apfeJn wahrend der licht und dunkel periode. Hart Sci 47: 193–197

    Google Scholar 

  • Olugbemi L.B., Bingham J. and Austin R.B. (1976) Ear and flag leaf photosynthesis of awned and awnless Triticum species. Ann Appl Biol 84: 231–240

    Article  Google Scholar 

  • Osmond C.B., Winter K. and Ziegler H. (1982) Functional significance of different pathways of CO2 fixation in photosynthesis. In: (OL Lange, PS Nobel, CB Osmond and H Ziegler eds). Physiological Plant Ecology II Water Relations and Carbon Assimilation. Springer, Berlin, pp 497–547

    Google Scholar 

  • Pantastico E.B. (1975) Post-harvest Physiology: Utilization of Tropical and Subtropical Fruits and Vegetables. AVJ Westport, Conn, USA

    Google Scholar 

  • Pearson J.A. and Robertson R.N. (1954) The physiology of growth in apple fruits. Aust J Biol Sci 7: 1–17

    PubMed  CAS  Google Scholar 

  • Phan C.T. (1970) Photosynthetic activity of fruit tissue. Plant Cell Physiol 11: 823–825

    Google Scholar 

  • Phan C.T. (1973a) Chloroplasts of tile peel and tile internal tissue of apple fruits. Experimentia 29: 1555–1557

    Article  Google Scholar 

  • Phan C.T. (1973b) A new look at the climacteric. 29th Annual Meeting of the West Canada Society of Horticulture. pp 52–64.

    Google Scholar 

  • Phan C.T. (1975) Occurrence of active chloroplasts in the internal tissues of apples. Their possible role in fruit maturation. Colloques Internationaux CNRS 238: 49–55

    Google Scholar 

  • Price D.N. and Hedley C.L. (1980) Developmental and varietal comparisons of pod carboxy levels of Pisum sativum L. Ann Bot 45: 283–294

    CAS  Google Scholar 

  • Queberdeaux B. and Chollet R. (1975) Growth and development of soybean pods: CO2 exchange and enzyme studies. Plant Physiol 55: 745–748

    Article  Google Scholar 

  • Rhodes M.J.C. and Wooltonon L.S.C. (1967) The respiration climacteric in apple fruits: The actioo of hydrolytic enzymes in peel tissue during the climacteric period in fruit detached from the tree. Phytochemistry 6: 1–12

    Article  CAS  Google Scholar 

  • Ruffner H.P. and Kliewer W.M. (1975) PEP carboxylase activity in grape berries. Plant Physiol 56: 67–71

    Article  PubMed  CAS  Google Scholar 

  • Schwerdtfeger G. and Buchloh G. (1968) Die korkentwicklung in den abschlussgebeben der triebe und fruchte verschiedener apfelsorten. Hort Sci 33: 77–102

    Google Scholar 

  • Sheoran I.S. and Singh R. (1988) Photosynthetic contribution of pod wall in seed development of chickpea. Proc Indian Natl Sci Acad 853: 531–534

    Google Scholar 

  • Sheoran I.S., Singal H.R. and Singh R. (1987) Photosynthetic characteristics of chickpea pod wall during seed development. Indian J Exp Biol 25: 843–847

    CAS  Google Scholar 

  • Sheoran I.S., Sawhney Y., Babbar S. and Singh R. (1991) In vivo fIxation of CO2 by attached pods of Brassica campestris L. Ann Bot 67: 425–428

    Google Scholar 

  • Siefennann-Hanns D. (1981) The role of carotenoids in chloroplasts of higher plants. In: (D Mazliak, ed) Biogenesis and Function of Plant Lipids, pp 331–340

    Google Scholar 

  • Singal H.R. Sheoran I.S. and Singh R. (1986a) Products of photosynthetic 14CO2 fIxation and related enzyme activities in fruiting structures of chickpea. Physiol Plant 66: 457–462

    Article  CAS  Google Scholar 

  • Singal H.R. Sheoran I.S. and Singh R. (1986b) in vitro enzyme activities and products of 14CO2 assimilation in flag leaf and ear parts of wheat. Photosynth Res 8: 113–122

    Article  CAS  Google Scholar 

  • Singal H.R. Sheoran I.S. and Singh R. (1987) Photosynthetic camon fIxation characteristics of fruiting structures of Brassica campestris L. Plant Physiol 83: 1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Singhal H.R. and Singh R. (1986) Purification and properties of PEP carboxylase from immature pods of chickpea (Cicer arietinum L.). Plant Physiol 80: 369–373

    Article  Google Scholar 

  • Singh R. (1987) Photosynthetic carbon fIxation characteristics of fruiting structures of wheat, chickpea and Brassica sp. Proc Indian Natl Sci Acad 853: 541–544

    Google Scholar 

  • Singh R. (1989) CO2 f1Xlltion by PEP carlloxylase in pod walls of chickpea In: (OS Singal, I Barber, RA Dilley, Govindjee, RHaselkom and P Mohanty eds) Photosynthesis: Molecular Biology and Energetics,. Narosa Publishing House, New Delhi, pp 315–329

    Google Scholar 

  • Singh B.K. and Pandey R.K. (1980) Production and distribution of assimilate in chickpea. Aust J Plant Physiol 7: 727–735

    Article  CAS  Google Scholar 

  • Singh D.P., Singh P. and Sharma H.C. (1986) Diurnal patterns of photosynthesis, evaporation and water use efficiency in mustard at different growth phases under fIeld conditions. Photosynthetica 10: 117–123

    Google Scholar 

  • Sinha S.K. and Sane P.Y. (1976) Relative photosynthetic rate in leaves and fruitwall of peas. Indian J Exp Biol 14: 592–594

    CAS  Google Scholar 

  • Smith W.H. (1947) A new method for the determination of the composition of the internal atmosphere of fleshy plant organs. Ann Bot 11: 363–368

    CAS  Google Scholar 

  • Takeda T. and Maruta H. (1956) Studies on CO2 exchange in crop plants. IV Roles played by the various parts of the photosynthetic organs of rice plant in producing grain during ripening period. Proc Crop Sci Soc (Japan) 24: 181–186

    Article  CAS  Google Scholar 

  • Thome O.N. (1965) Photosynthesis of ears and flag leaves of wheat and barley. Ann Bot 29: 317–329

    Google Scholar 

  • Thome J.H. (1979) Assimilate redistribution from soybean pod-walls during seed development. Agron J 71: 812–816

    Article  Google Scholar 

  • Ting I.P. and Dugger W.M. (1967) CO2 metabolism in com roots. I Kinetics of carlloxylation and decarlloxylation. Plant Physiol 42: 712–718

    Article  PubMed  CAS  Google Scholar 

  • Todd O.W., Bean R.C. and Propst B. (1961) Photosynthesis and respiration in developing fruits. n Comparative rates at various stages of development. Plant Physiol 36: 69–73

    Article  PubMed  CAS  Google Scholar 

  • Tribe M. and Whittaker P. (1982) Chloroplasts and Mitochondria. Studies in Biology No. 31, Edward Arnold, London

    Google Scholar 

  • Tschakalova E. and Hoffmann P. (1976) Strukfurelle und funktionelle grundiagen des photosynthetischen gaswechsels bei Triticum aestivum L. Wiss Z Humboldt Univ Berlin 25: 723–736

    Google Scholar 

  • Ulrich R. and Marcellin P. (1955) Voies et modalites des exchanges de gaz carbonique et doxygene des fruits avec 'I'atmosphere ambiante. Recherche CNRS 31: 241–251

    Google Scholar 

  • Yu I.C.Y., Yelenowski O. and Bausher M.O. (1985) Photosynthetic activity in the flower buds of valencia orange. Plant Physiol 78: 420–423

    Article  Google Scholar 

  • Westwood M.N. (1978) Temperate Zone Pomology. Freeman and CO, San Francisco, USA

    Google Scholar 

  • Wienicke I. (1968) Ein bietrag zum transport 4C markierter assimilate vom blatt zur Apfelfruct. Mitteilungen Klosterneburg 18: 462–469

    Google Scholar 

  • Willmer C.M. and Iohnston W.R. (1976) CO2 assimilation in some aerial plant organs and tissues. Planta 130: 33–37

    Article  CAS  Google Scholar 

  • Wirth E., Kelly O.J., Fischbeck O. and Latzko E. (1977) Enzyme activities and products of CO2 fIxation in various photosynthetic organs of wheat and oat. Z Pflanzenphysiol 82: 78–87

    CAS  Google Scholar 

  • Young R.E. and Biale J.B. (1968) CO2 effects on fruits. DI Fixation of 14CO2 in lemon in an atmosphere enriched with CO2 Planta 81: 253–263

    Article  CAS  Google Scholar 

  • Zelles L. (1967) Untersuchungen uber den farbstoflge halt der vegetations periode und unter verschiedenen lagerbedingungen Dissertation, Institut fur dstbau, Universitat Bonn.

    Google Scholar 

  • Ziegler-Jöns A. (1989a) Gas exchange of ears of cereals in response to CO2 and light I Relative contributions of parts of the ears of wheat. oat and barley to the gas exchange of the whole organ. Planta 178: 84–91

    Article  Google Scholar 

  • Ziegler-Jöns A. (1989b) Gas exchange of ears of cereals in response to CO2 and light. U Occurrence of a C3-C4 intermediate type of photosynthesis. Planta 178: 164–175

    Article  Google Scholar 

  • Ziegler-Jons A. Knoppik D. and Sellinger H. (1987) Characteristics of the CO2 exchange of wheat ears. In: (J Biggins. ed) Progress in Photosynthesis Research. Vol IV. Martinus Nijhoff, Dordrecht, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, R. (1993). Photosynthetic Characteristics of Fruiting Structures of Cultivated Crops. In: Abrol, Y.P., Mohanty, P., Govindjee (eds) Photosynthesis: Photoreactions to Plant Productivity. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2708-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2708-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5200-9

  • Online ISBN: 978-94-011-2708-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics