Skip to main content

Error Bounds Based on Approximation Theory

  • Chapter
Numerical Integration

Part of the book series: NATO ASI Series ((ASIC,volume 357))

Abstract

We give examples for the usefulness of approximation theory in the discussion of error bounds for quadrature rules. Our main point is that this method is not only simple and general, but that it leads to sharp estimates in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, Ch. T. H. (1968) On the nature of certain quadrature formulas and their errors, SIAM J. Numer. Anal. 5, 783–804.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, S. (1918) Quelques remarques sur l’interpolation, Math. Ann. 79, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  3. Brass, H. (1973) Eine Fehlerabschätzung zum Quadraturverfahren von Clenshaw und Curtis, Numer. Math. 21, 397–403.

    Article  MathSciNet  MATH  Google Scholar 

  4. Brass, H. (1979) Zur Approximation einer Klasse holomorpher Funktionen im Reellen, in G. Meinardus (Ed.): Approximation in Theorie und Praxis, B.I. Wissenschaffesverlag, Mannheim, Wien, Zürich, 103–121.

    Google Scholar 

  5. Brass, H. and Schmeisser, G. (1979) The definiteness of Filippi’s quadrature formulae and related problems, in G. Hämmerlin (Ed.): Numerische Integration, Birkhäuser Verlag, Basel, 109–119.

    Google Scholar 

  6. Brass, H. and Schmeisser, G. (1981) Error estimates for interpolatory quadrature formulae, Numer. Math. 37, 371–386.

    Article  MathSciNet  MATH  Google Scholar 

  7. Brass, H. (1985) Eine Fehlerabschätzung für positive Quadraturformeln, Numer. Math. 47, 395–399

    Article  MathSciNet  MATH  Google Scholar 

  8. Brass, H. and Förster, K.-J. (1987) On the estimation of linear functionals, Analysis 7, 237–258.

    MathSciNet  MATH  Google Scholar 

  9. Brass, H. (1988) Fast-optimale Formeln zur harmonischen Analyse, ZAMM 68, T484–T485.

    MathSciNet  MATH  Google Scholar 

  10. Brass, H. (1991) Practical Fourier analysis—error bounds and complexity, ZAMM 71, 3–20.

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, P. J. and Rabinowitz, P. (1984) Methods of numerical integration (second edition), Academic Press, Orlando.

    MATH  Google Scholar 

  12. DeVore, R. A. and Scott, L. R. (1984) Error bounds for Gaussian quadrature and weighted-L 1 polynomial approximation, SIAM J. Numer. Anal. 21, 400–412.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fisher, S. D. (1977) Best approximation by polynomials, J. Approx. Theory 21, 43–59.

    Article  MATH  Google Scholar 

  14. Förster, K.-J. (1982) A comparison theorem for linear functionals and its application in quadrature, in G. Hämmerlin (ed.): Numerical Integration, Birkhäuser Verlag, Basel, 66–76.

    Google Scholar 

  15. Förster, K.-J. and Petras, K. (1990) On estimates for weights in Gaussian quadrature in the ultraspherical case, Math, of Comp. 55, 243–264.

    MATH  Google Scholar 

  16. Förster, K.-J. and Petras, K. (1991) Error estimates in Gaussian quadrature for functions of bounded variation, to appear in SIAM J. Numer. Anal. 28.

    Google Scholar 

  17. Freud, G. (1969) Orthogonale Polynome, Birkhäuser Verlag, Basel.

    Book  MATH  Google Scholar 

  18. Haussmann, W. and Zeller, K. (1982) Quadraturrest, Approximation und Chebyshev-Polynome, in G. Hämmerlin (ed.): Numerical Integration, Birkhäuser Verlag, Basel, 128–137.

    Google Scholar 

  19. Kütz, M. (1984) Asymptotic error bounds for a class of interpolatory quadratures, SIMM J. Numer. Anal. 21, 167–175.

    Article  MATH  Google Scholar 

  20. Lange, S. (1987) Experimente und Abschätzungen zur Polynomapproximation, Diplomarbeit, Institut für Angewandte Mathematik, TU Braunschweig.

    Google Scholar 

  21. Locher, F. and Zeller, K. (1968) Approximationsgüte und numerische Integration, Math. Zeitschr. 104, 249–251.

    Article  MathSciNet  MATH  Google Scholar 

  22. Nicholson, D., Rabinowitz, P., Richter, N. and Zeilberger, D. (1971) On the error in the numerical integration of Chebyshev polynomials, Math, of Comp. 25, 79–86.

    Article  MATH  Google Scholar 

  23. Nikolsky, S. (1946) On the best approximation of functions satisfying Lipschitz’s conditions by polynomials (Russian), Bulletin de l’Académie des sciences de 1’URSS (Izvestija Akad. Nauk. SSSR) Série math. 10, 295–322.

    MathSciNet  MATH  Google Scholar 

  24. Petras, K. (1988) Asymptotic behaviour of Peano kernels of fixed order, in H. Brass and G. Hämmerlin (eds.) Numerical Integration HI, Birkhäuser Verlag, Basel, 186–198.

    Google Scholar 

  25. Petras, K. (1989) Normabschätzungen für die ersten Peanokerne der Gauß-Formeln, ZAMM 69, T81–T83.

    MathSciNet  MATH  Google Scholar 

  26. Rivlin, Th. J. (1974) The Chebyshev polynomials, Wiley, New York, London.

    MATH  Google Scholar 

  27. Sinwel, H. F. (1981) Uniform approximation of differentiable functions by algebraic polynomials, J. Approx. Theory 32, 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  28. Sinwel, H. F. (1981) Konstanten in den Sätzen von Jackson und Timan, Dissertationen der Johannes-Kepler Universität Linz, Bd. 27, VWGÖ Wien.

    Google Scholar 

  29. Stroud, A. H. (1966) Estimating quadrature errors for functions with low continuity, SIAM J. Numer. Anal. 3, 420–424.

    Article  MathSciNet  MATH  Google Scholar 

  30. Timan, A. F. (1963) Theory of approximation of functions of a real variable, Pergamon Press, Oxford.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brass, H. (1992). Error Bounds Based on Approximation Theory. In: Espelid, T.O., Genz, A. (eds) Numerical Integration. NATO ASI Series, vol 357. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2646-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2646-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5169-9

  • Online ISBN: 978-94-011-2646-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics