Skip to main content

A Survey of Methods for Constructing Cubature Formulae

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 357))

Abstract

In this survey we distinguish two approaches to the problem of constructing cubature formulae: the invariant theoretical and the ideal theoretical approach. Both approaches are described theoretically for arbitrary dimensions. Methods for constructing cubature formulae are described for 2-dimensional regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Appell. Sur une classe de polynome à deux variables et le calcul approche des integrales double. Ann. Fac. Sci. Univ. Toulouse, 4: H1–H20, 1890.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Beckers and A. Haegemans. Construction of three-dimensional invariant cubature formulae. Report TW 85, Dept. of Computer Science, K.U. Leuven, 1986.

    Google Scholar 

  3. H. Berens and H.J. Schmid. On the number of nodes of odd degree cubature formulae for integrals with Jacobi weights on a simplex. This volume, 1992.

    Google Scholar 

  4. J. Berntsen and T.O. Espelid. On the construction of higher degree three-dimensional embedded integration rules. SIAM J. Numer. Anal., 25: 222–234, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Chevalley. Invariants of finite groups generated by reflections. Amer. J. Math., 77: 778–782, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Cools. The construction of cubature formulae using invariant theory and ideal theory. PhD thesis, Katholieke Universteit Leuven, 1989.

    Google Scholar 

  7. R. Cools and A. Haegemans. Automatic computation of knots and weights of cubature formulae for circular symmetric planar regions. Report TW 77, Dept. of Computer Science, K.U. Leuven, 1986.

    Google Scholar 

  8. R. Cools and A. Haegemans. Optimal addition of knots to cubature formulae for planar regions. Numer. Math., 49: 269–274, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Cools and A. Haegemans. Automatic computation of knots and weights of cubature formulae for circular symmetric planar regions. J. Comput. Appl. Math., 20: 153–158, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Cools and A. Haegemans. Construction of fully symmetric cubature formulae of degree 4k-3 for fully symmetric planar regions. J. Comput. Appl. Math., 17: 173–180, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Cools and A. Haegemans. Another step forward in searching for cubature formulae with a minimal number of knots for the square. Computing, 40: 139–146, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Cools and A. Haegemans. Construction of symmetric cubature formulae with the number of knots (almost) equal to Möller’s lower bound. In H. Brass and G. Hämmerlin, editors, Numerical Integration III, pages 25–36. Birkhäuser Verlag, 1988.

    Google Scholar 

  13. R. Cools and A. Haegemans. Why do so many cubature formulae have so many positive weights? BIT, 28: 792–802, 1988.

    MathSciNet  MATH  Google Scholar 

  14. R. Cools and A. Haegemans. On the construction of multi-dimensional embedded cubature formulae. Numer. Math., 55: 735–745, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Cools and A. Haegemans. A lower bound for the number of function evaluations in an error estimate for numerical integration. Constr. Approx., 6: 353–361, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Cools and H.J. Schmid. Minimal cubature formulae of degree 2k — 1 for two classical functionals. Computing, 43: 141–157, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  17. P.J. Davis and P. Rabinowitz. Methods of numerical integration. Academic Press, 1984.

    Google Scholar 

  18. T.O. Espelid. On the construction of good fully symmetric integration rules. SIAM J. Numer. Anal., 24: 855–881, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Franke. Orthogonal polynomials and approximate multiple integration. Siam J. Numer. Anal., 8: 757–765, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Gatermann. Gruppentheoretische Konstruction von symmetrischen Kubaturformeln. Technical Report TR 90-1, Konrad-Zuse-zentrum für Informationstechnik Berlin, 1990.

    Google Scholar 

  21. K. Gatermann. Linear representations of finite groups and the idealtheoretical construction of G-invariant cubature formulas. This volume, 1992.

    Google Scholar 

  22. W. Gröbner. Moderne Algebraiche Geometric Springer Verlag, Wien, 1949.

    Google Scholar 

  23. A. Haegemans. Circularly symmetrical integration formulas for two-dimensional circularly symmetrical regions. BIT, 16: 52–59, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Haegemans and R. Piessens. Construction of cubature formulas of degree eleven for symmetric planar regions, using orthogonal polynomials. Numer. Math., 25: 139–148, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Haegemans and R. Piessens. Construction of cubature formulas of degree seven and nine symmetric planar regions, using orthogonal polynomials. SIAM J. Numer. Anal., 14: 492–508, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Hilbert. Über die Theorie der algebraischen Formen. Math. Ann., 36: 473–534, 1890.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Keast and J.N. Lyness. On the structure of fully symmetric multidimensional quadrature rules. SIAM. J. Numer. Anal., 16: 11–29, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.N. Lyness and D. Jespersen. Moderate degree symmetric quadrature rules for the triangle. J. Inst. Maths Applics., 15: 19–32, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Mantel. Non-fortuitous, non-product, non-fully symmetric cubature structures (abstract). In P. Keast and G. Fairweather, editors, Numerical Integration, page 205. Reidel Publishing Company, 1987.

    Google Scholar 

  30. F. Mantel and P. Rabinowitz. The application of integer programming to the computation of fully symmetric integration formulas in two and three dimensions. SIAM J. Numer. Anal., 14: 391–425, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  31. J.C. Maxwell. On approximate multiple integration between limits of summation. Proc. Cambridge Philos. Soc., 3: 39–47, 1877.

    MATH  Google Scholar 

  32. T. Molien. Über die Invarianten der linearen Substitutiongruppen. Berliner Sitzungsberichte, pages 1152–1156, 1898.

    Google Scholar 

  33. H.M. Möller. Polynomideale und Kubaturformeln. PhD thesis, Universität Dortmund, 1973.

    Google Scholar 

  34. H.M. Möller. Kubaturformeln mit minimaler Knotenzahl. Numer. Math., 25: 185–200, 1976.

    Article  MATH  Google Scholar 

  35. H.M. Möller. On the construction of cubature formulae with few nodes using Gröbner bases. In P. Keast and G. Fairweather, editors, Numerical Integration, pages 177–192. Reidel Publ. Comp., 1987.

    Google Scholar 

  36. C.R. Morrow and T.N.L. Patterson. Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal., 15: 953–976, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Rabinowitz and N. Richter. Perfectly symmetric two-dimensional integration formulas with minimal number of points. Math. Comp., 23: 765–799, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Radon. Zur mechanischen Kubatur. Monatsh. Math., 52: 286–300, 1948.

    Article  MathSciNet  MATH  Google Scholar 

  39. H.J. Schmid. Construction of cubature formulae using real ideals. In W. Schempp and K. Zeller, editors, Multivariate approximation theory, pages 359–377, Stuttgart, 1979. Birkhäuser Verlag.

    Google Scholar 

  40. H.J. Schmid. Interpolatorische Kubaturformeln und reelle Ideale. Math. Z., 170: 267–282, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  41. H.J. Schmid. Interpolatorische Kubaturformeln. Dissertationes Mathematicae, CCXX, 1983.

    Google Scholar 

  42. H.J. Schmid. Minimal cubature formulae and matrix equations. Unpublished, 1991.

    Google Scholar 

  43. G.Cai. Shephard and J.A. Todd. Finite unitary reflection groups. Canad. J. Math., 6: 274–304, 1954.

    Article  MathSciNet  MATH  Google Scholar 

  44. S.L. Sobolev. Cubature formulas on the sphere invariant under finite groups of rotations. Soviet Math., 3: 1307–1310, 1962.

    MathSciNet  Google Scholar 

  45. A.H. Stroud. Approximate calculation of multiple integrals. Prentice Hall, 1971.

    Google Scholar 

  46. P. Verlinden and R. Cools. Minimal cubature formulae of degree 4k + 1 for integrals with circular symmetry. Report TW 137, Dept. of Computer Science, K.U. Leuven, 1990.

    Google Scholar 

  47. P. Verlinden and R. Cools. A cubature formula of degree 19 with 68 nodes for integration over the square. Report TW 149, Dept. of Computer Science, K.U. Leuven, 1991.

    Google Scholar 

  48. P. Verlinden, R. Cools, D. Roose, and A. Haegemans. The construction of cubature formulae for a family of integrals: a bifurcation problem. Computing, 40: 337–346, 1988.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cools, R. (1992). A Survey of Methods for Constructing Cubature Formulae. In: Espelid, T.O., Genz, A. (eds) Numerical Integration. NATO ASI Series, vol 357. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2646-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2646-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5169-9

  • Online ISBN: 978-94-011-2646-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics