Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 356))

Abstract

Given a nonempty closed bounded subset X of a Banach space E, we study the ambiguous locus A e (X) (resp. A u (X), A wp (X)) of X i.e. the set of all points z ∈ E such that the nearest point mapping from X to z fails to have existence (resp. uniqueness, well posedness). If E is uniformly convex, we show that A wp (X) is σ-porous in E. Moreover, we prove that for most (in the sense of the Baire category) nonempty closed bounded subsets X of E the set A wp (X) is uncountable and dense in E, provided that E is separable, strictly convex, and of dimension ≥ 2. Finally, under the same assumptions on E, we prove that for most nonempty compact convex subsets X of E the ambiguous locus A u (X), relative to the farthest point mapping, is uncountable and dense in E

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asplund, E. (1966), Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4, pp. 213–216.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartke, K. and Berens, H. (1986), Eine Beschreibung der Nichteindentigkeitsmenge für die beste Approximation in der Euklidischen Ebene, J. Approx. Theory 47, pp. 54–74.

    Article  MathSciNet  MATH  Google Scholar 

  3. Borwein, J.M. and Fitzpatrick, S. (1989), Existence of nearest points in Banach spaces, Can. J. Math. 41, pp. 702–720.

    Article  MathSciNet  MATH  Google Scholar 

  4. De Blasi, F.S. and Myjak, J. Ambiguous loci of the nearest point mapping in Banach spaces, (submitted).

    Google Scholar 

  5. De Blasi, F.S. and Myjak, J. Some typical properties of compact sets in Banach spaces, (submitted).

    Google Scholar 

  6. De Blasi, F.S. and Myjak, J. Ambiguous loci of the farthest point mapping from compact convex sets, (submitted).

    Google Scholar 

  7. De Blasi, F.S., Myjak, J., Papini, P.L. Porous sets in best approximation Theory, J. London Math. Soc. (to appear).

    Google Scholar 

  8. Dolzhenko, E. (1967) Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser. Mat., 31, pp. 3–14.

    MathSciNet  MATH  Google Scholar 

  9. Dontchev, A. and Zolezzi, T. Well posed optimization problems, (to appear).

    Google Scholar 

  10. Furi, M. and Vignoli, A. (1970), About well posed optimization problems for functionals in metric spaces, J. Optim. Theory Appl., 5, pp. 225–229.

    Article  MATH  Google Scholar 

  11. Edelstein, M. (1966), Farthest points of sets in uniformly convex Banach Spaces, Israel J. Math., 4, pp. 171–176.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gruber, P. and Zamfirescu, T. (1990), Generic properties of compact starshaped, sets, Proc. Amer. Soc., 108, pp. 207–214.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gruber, P. and Kenderov, P. (1982), Approximation of convex bodies by Polytopes, Rend. Circ. Mat. Palermo, 31, pp. 195–225.

    Article  MathSciNet  MATH  Google Scholar 

  14. Klee, V.L. (1959), Some new results on smoothness and rotundity in normed linear paces, Math. Ann., 139, pp. 51–63.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ka-Sing Lau (1978), Almost Chebyshev subspaces in reflexive Banach spaces, Indiana Univ. Math. J., 27, pp. 791–795.

    Article  MathSciNet  MATH  Google Scholar 

  16. Konjagin, S.V. (1980), On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces, Soviet Math. Dokl., 21, pp. 418–422.

    Google Scholar 

  17. Konjagin, S.V. (1983), Sets of points of nonemptyness and continuity of the metric projection, Matemat. Zametki, 33, pp. 331–338.

    Google Scholar 

  18. Stečkin, S. (1963), Approximative properties of subsets of Banach spaces (Russian), Rev. Roum. Math. Pures Appl., 8, pp. 5–8.

    Google Scholar 

  19. Zajíček, T. (1985), On the Fréchet differentiability of distance functions, Rend. Circ. Mat. Palermo (2)5, Supplemento, pp. 161–165.

    Google Scholar 

  20. Zajíček, L. (1987/88), Porosity and σ-porosity, Real Analysis Exchange, 13(2), pp. 314–350.

    MathSciNet  Google Scholar 

  21. Zamfirescu, T. (1985), Using Baire category in geometry, Rend. Sem. Mat. Univers. Politecn. Torino 43, 1, pp. 67–88.

    MathSciNet  MATH  Google Scholar 

  22. Zamfirescu, T. (1990), The nearest point mapping is single valued nearly Everywhere, Arch. Math. 51, pp. 563–566.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Blasi, F.S., Myjak, J. (1992). Ambiguous Loci in Best Approximation Theory. In: Singh, S.P. (eds) Approximation Theory, Spline Functions and Applications. NATO ASI Series, vol 356. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2634-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2634-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5164-4

  • Online ISBN: 978-94-011-2634-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics