Skip to main content

Phase Change Phenomena at Liquid Saturated Self Heated Particulate Beds

  • Chapter
Modelling and Applications of Transport Phenomena in Porous Media

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 5))

Abstract

A wide variety of industrial, agricultural and energy production processes are related to the thermohydraulics of porous media saturated with multiple fluid phases. Examples include the drying of porous solids, the freezing of soils, the geothermal application, the thermally enhanced oil recovery, the heat transfer from buried pipelines, the design of heat pipes, the underground high level nuclear energy waste disposal and the Post Accident Heat Removal PAHR. This last application, addressing the nuclear safety analysis of Liquid Metal Fast Breeder and Light Water Reactors, is the main topic of the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barleon, L. and Werk, H. Debris Bed Investigation with Adiabatic And Cooled Bottom. 9th Meeting Liquid Metal Working Group, Rome 1980.

    Google Scholar 

  • Barleon, L., Thomauske, K. and Werle, H. Cooling of debris beds. Nuclear Technology 65:67–86, 1984.

    Google Scholar 

  • Barleon, L. Thomauske, K. and Werle, H. Investigation On Channel Penetration At KfK. Meeting on Debris Bed Modeling, Ispra, May 29–30, 1985.

    Google Scholar 

  • Bear, J. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company Inc., New York, 1972.

    Google Scholar 

  • Benocci, C., Buchlin, J-M. and Joly, C. Theoretical And Numerical Modeling Of The PAHR Debris Bed Behaviour Implemented In The TORPEDO Code. von Karman Institute, CR 1982–04/EA, November 1981.

    Google Scholar 

  • Brooks, R. H. and Corey, A. T. Properties of porous media affecting fluid flow. J. Irrig. Drainage Division, ASCE 92 IR2:61–88, 1966.

    Google Scholar 

  • Buchlin, J-M. and Thiry, F. Simulation Expérimentale Du Refroidissement Post-accidentel d’Un Lit De Débris Saturé Par Un Liquide. von Karman Institute, CR 1983–08/EA, 1982.

    Google Scholar 

  • Bucblin, J-M., Benocci, C., Joly, C. and Siebertz, A. A Two Dimensional Finite Difference Modeling Of The Thermohydraulic Behaviour Of The PAHR Debris Bed Up To Extended Dryout. von Karman Institute, Preprint 1982–24, 1982.

    Google Scholar 

  • Buchlin, J-M., Simon, G. and Barth, U. Experimental Simulation Of The Post Accident heat Removal Of Liquid Saturated Debris Bed. von Karman Institute, CR 1984–05/EA, 1983.

    Google Scholar 

  • Buchlin, J-M. and van Koninckxloo, T. O. P. E. R. A. II- A Test Facility To Study The Thermohydraulics Of Liquid Saturated Self Heated Porous Media. von Karman Institute, TM 41, 1986.

    Google Scholar 

  • Buretta, R. G. and Berman, A. S. Convective heat transfer in liquid saturated porous layer. Journal of Applied MechanicsJune 1976.

    Google Scholar 

  • Campos, J. M. Theoretical And Experimental Investigation Of Channeled Boiling In Bottom Heated Particulate Beds. von Karman Institute, PR 1983–05, June 1983.

    Google Scholar 

  • Catton, I., Dhir, V. K., Somerton, C. W. and Squarer, D. An Experimental Study Of Debris Bed Coolability Under Pool Boiling Conditions. EPRI, NP-3094, May 1983.

    Google Scholar 

  • Chang, S. H. and Kim, S. H. Derivation of a dryout model in a particle debris bed with the drift-flux approach. Nuclear Science and Engineering 91:404–413, 1985.

    Google Scholar 

  • Chu, W., Dhir, V. K. and Marshall, J. Study Of Pressure Drop, Void Fraction And Relative Permeabilities Of Two-Phase Flow Through Porous Media. AIChE Symposium Series, 79:224–235, 1983.

    Google Scholar 

  • Cook, I. and Peckover, R. S. Effective Thermal Conductivity Of Debris Beds. In “Post Accident Debris Cooling”, Proc. 5th PAHR Information Exchange Meeting, Karlsruhe, Braun, 1983.

    Google Scholar 

  • Dhir, V. K. and Catton, I. Study Of Dryout Heat Fluxes In Beds Of Inductively Heated Particles. UCLA, NUREG-0262 NRC 7, 1977.

    Google Scholar 

  • Di Francesco, M. Etude Des Paramètres d’Écoulement En Simple El Double Phase Dans Un Lit De Particules. Travail de fin d’études, Univ. Libre de Bruxelles, Institut von Karman, May 1987.

    Google Scholar 

  • El-Genk, M. S. and Bergeron, E. Dryout Heat Flux In Particulate Beds of Steel Grit. ANS Annual Meeting, Detroit, June 1983.

    Google Scholar 

  • El-Genk, M. S., Louie, M., Bergeron, E. and Mitchell, D. Dependence of Porosities And Capillary Pressures In Particle Beds On The Morphology And The Size Of The Particles. AIChE Symposium Series 225,79:256–267, 1983.

    Google Scholar 

  • Fand, R. M., Kim, B. Y. K., Lam, A. C. C. and Phan, R. T. Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. Trans. ASME, J. of Fluids Engineering 109(3):268, 1987.

    Article  Google Scholar 

  • Gabor, J. D., Epstein, M., Jones, S. W. and Cassulo, J. C. Status Report On Limiting Heat Fluxes in Debris Beds. ANL/RAS 80–21, Sept 1980.

    Google Scholar 

  • Gabor, J. D., Hesson, J.C. Baker L. and Cassulo, J. C. Simulation experiments on heat transfer from fast reactor fuel debris. Trans. ANS 15(2):836, 1972.

    Google Scholar 

  • Gabor, J. D., Sowa, E. S., Baker, L. and Cassulo, J. C. Studies And Experiments On Heat Removal From Fuel Debris In Sodium. ANS Fast Reactor Safety Meeting, Beverly Hills, CA, 1974.

    Google Scholar 

  • Gladnick, P.G. Experimental Investigation Of Channeling During Boiling In Liquid Saturated Porous Media. Von Karman Institute, SR 1985–24

    Google Scholar 

  • Gronager, J. A., Schwarz, M. and Lipinski, R. J. PAHR Debris Bed Experiment D4. NUREG/CR 1809, January 1981.

    Google Scholar 

  • Hardee, H. C. and Nilson, R. H. Natural convection in porous media with heat generation. Nuclear Science and Engineering 69:119, 1977.

    Google Scholar 

  • Joly, C. and Le Rigoleur, C. General And Particular Aspects Of The Particulate Bed Behaviour In The PARR Situation For Liquid Metal Fast Breeder Reactors. In von Karman Institute LS 1979–04 “Fluid Dynamics of Porous Media in Energy Applications”, February 1979.

    Google Scholar 

  • Jones, S. W., Baker, L., Bankoff, S. G., Epstein, M. and Pederson, D. R. A theory for prediction of channel depth in boiling particulate beds. Trans. ASME, J. Heat Transfer 104(4):806–807, 1982.

    Article  Google Scholar 

  • Kampf, H. and Karsten, G. Effects of different types of void volumes on the radial temperature distribution of fuel pins. Nuclear Appt. Tech. ,9:288, 1970.

    Google Scholar 

  • Kaviany, M. and Mittal, M. Funicular state in drying of a porous slab. Int. J. Heat Mass Transfer 30:1407–1418, 1987.

    Article  Google Scholar 

  • Keowen, R. S. Dry Out Of A Fluidized Particle Bed With Internal Heat Generation. M.S. Thesis, University of California, 1974.

    Google Scholar 

  • Larson, R. G., Davis, H. T. and Scriven, L. E. Displacement of residual nonwetting fluid from porous media. Chem. Eng. Sei. ,36:75–85, 1981.

    Article  Google Scholar 

  • Lee, H. S. and Catton, I. Two-Phase Flow In Stratified Porous Media. 6th Information Exchange Meeting on Debris Coolability, Los Angeles, Nov. 7–9, 1984.

    Google Scholar 

  • Lin, C-Y. and Slattery, J. C. Three-dimensional, randomized network model for two-phase flow through porous media. AIChE Journal 28:311–324, 1982.

    Article  Google Scholar 

  • Lipinski, R. J. A particle bed dryout model with upward and downward boiling. Trans. ANS 35:350, 1980.

    Google Scholar 

  • Lipinski, R. J. A Model For Boiling And Dryout In Particle Beds. Sandia Labs Report SAND82–0765 (NUREG/CR-2646), June 1982.

    Google Scholar 

  • Lipinski, R. J. A coolability model for post accident nuclear reactor debris. Nuclear Technology 65:53–66, 1984.

    Google Scholar 

  • Macbeth, R. V. and Trenberth, R. Pressure Measurements In Boiling Particle Beds With Water At 1 Bar. AEE Winfrith Report AEEW-R 1641, 1984.

    Google Scholar 

  • MacDonald, I. F., El-Sayad, M. S., Mow, K. and Dullien, F. A. L. Flow through porous media - The Ergun’s equation revisited. Ind. Eng. Chem. Fund. ,18:199, 1979.

    Article  Google Scholar 

  • Mehr, K. and Wurtz, J. A Model For The Channeling Of Particle Beds Based On A Parallel Capillary Tube Approach. Technical Note No. I.06.C1.85.166, Ispra Joint Research Center, December 1985.

    Google Scholar 

  • Mehr, K. and Wurtz, J.:Heat Transfer In Self-Heated Particle Beds Submerged In Liquid Coolant. VKI Lecture Series 1988–01 “Modelling and Applications of Transport Phenomena in Porous Media”, Nov.30-Dec.3, 1987.

    Google Scholar 

  • Mitchell, G. W. and Ottinger, C. A. The D7 Experiment Heat Removal From A Shallow Stratified UO 2 -Sodium Particle Bed. Proc. 5th Post Accident Heat Removal Information Exchange Meeting, Karlsruhe, 1982.

    Google Scholar 

  • Mitchell, G. W., Ottinger, C. A. and Meister, H. Coolability Of UO 2 With Downward Heat Removal - The D10 Experiment. Proc. 6th Information Exchange Meeting on Debris Coolability, U. California, Los Angeles, November 7–9, 1984.

    Google Scholar 

  • Muller, U. and Schulenberg, T. Post-Accident Heat Removal Research: A State Of The Art Review. KfK 3601.

    Google Scholar 

  • Naik, A. S. and Dhir, V. K. Forced flow evaporative cooling of a volumetrically heated porous layer. Int. J. Heat and Mass Transfer 25:541–552, 1982.

    Article  Google Scholar 

  • Ostensen, R. W., and Lipinski, R. J. A particle bed dryout based on flooding. Nuclear Science and Eng. ,79:110, 1981.

    Google Scholar 

  • Ottinger, C. A., Kelly, J. E., and Lipinski, R. J. Preliminary Report Of The D9 Debris Bed Experiment. November 1982.

    Google Scholar 

  • Reed, A. W. The Effect Of Channeling On The Dryout Of Heated Particulate Beds Immersed In A Liquid Pool. Ph.D. Thesis, MIT, Feb. 1982.

    Google Scholar 

  • Reed, A. W.: A mechanistic explanation of channels in debris beds. Trans. ASME, J. Heat Transfer 108(1):125–131, 1986.

    Article  Google Scholar 

  • Reed, A. W., Meister, H. and Sasmor, D. J. Measurements of capillary pressure in urania debris beds. Nuclear Technology 78:54–61, 19871.

    Google Scholar 

  • Rhee, S. J. and Dhir, V. K. Natural Cconvection Heat Transfer In Beds Of Inductively Heated Particles. UCLA, NUREG/CR-0408, 1978.

    Google Scholar 

  • Ruel, F. Precalculalions And Sensitivity Studies For The PAIIR in-pile Experiment Ml. Technical Note No 1.06.01.86.101, JRC-Ispra, October 1986.

    Google Scholar 

  • Saez, A.E. and Carbonell, R.G. Hydrodynamic parameters for gas-liquid cocurrent flow in packed beds. AIChE Journal 31:52–62, 1985.

    Article  Google Scholar 

  • Scheidegger, A. E. The Physics Of Flow Through Porous Media. University of Toronto Press, 1957.

    Google Scholar 

  • Schulenberg, T. and Muller, U. A Refined Model For The Coolability Of Core Debris With Flow Entry From The Bottom. 6th Information Exchange Meeting on Debris Coolability, Los Angeles, Nov. 7–9, 1984.

    Google Scholar 

  • Schulz, B. Thermal conductivity of porous and highly porous materials. High Temp. High Pressures 13:649, 1981.

    Google Scholar 

  • Schwalm, D. and Nijssing R. The influence of subcooling on dryout inception in sodium-saturated fuel particle beds with top cooling and adiabatic bottom. Nuclear Engrg and Des. ,70:201–208, 1982.

    Article  Google Scholar 

  • Schwalm, D. Some Remarks On Channeling In Particle Beds. Ispra Joint Research Center; EUR 10.005 EN, 1985.

    Google Scholar 

  • Shires G. L. and Stevens G. F. Dryout During Boiling In Heated Particulate Beds. AEE Winfrith Report AEEW-R 1779, 1980.

    Google Scholar 

  • Squarer, D. and Peoples, J. A. Dryout in inductively heated bed with and without forced flow. Trans. ANS 341980.

    Google Scholar 

  • Stauffer, F. and Dracos, T. Experimental and numerical study of water and solute infiltration in layered porous media. J. Hydrology 84:9–34, 1986.

    Article  Google Scholar 

  • Stevens, G. F. and Trenberth, R. Experimental Studies Of Boiling Heat Transfer And Dryout In Heat Generating Particulate Beds In Water At 1 Bar. AEEWR 1545, 1982.

    Google Scholar 

  • Stevens, G. F. Particle-Bed Heal Transfer Studies At The Atomic Energy Establishment Winfrith (UKAEA). Presented at the First UK National Heat Transfer Conference, Leeds, July 1985.

    Google Scholar 

  • Stubos, A. K. Experimental And Theoretical Investigation Of Boiling In Liquid Saturated Porous MediaVKI PR 1985–25, June 1985.

    Google Scholar 

  • Stubos, A. K. and Buchlin, J-M. An Attempt To Model Thermohydraulic Disturbances In Liquid Saturated Heat Dissipating Particulate Beds. VKI Preprint, 12 February 1987. Presented at the PARR Workshop, Ispra, Italy, February 26, 1987.

    Google Scholar 

  • Stubos, A. K. and Buchlin, J-M. Modeling of vapour channeling behaviour in liquid saturated debris beds. Trans. ASME, J. Heat Transfer 110(4A):968–975, 1988.

    Article  Google Scholar 

  • Sun, W.J. Convective instability in superposed porous and free layers. U. Minnesota, Ph.D. Thesis, 1973.

    Google Scholar 

  • Topp, G. C. and Miller, E. E. Hysteretic moisture characteristics and hydraulic conductivities for glass-bead media. Soil Sci. Soc. Am. Proc. ,30:156, 1966.

    Google Scholar 

  • Ternberth, R. and Stevens, G. F. An Experimental Study Of Boiling Heat Transfer And Dryout In Heated Particulate Beds. AEEW-R 1342, 1980.

    Google Scholar 

  • Turland, B. D. and Moore, K. One-Dimensional Models Of Boiling And Dryout. In Post Accident Debris Cooling, pp.192–197, Gaun, Karlsruhe, 1983.

    Google Scholar 

  • Tutu, N. K., Ginsberg, T., and Chen, J. C. Interfacial drag for two-phase flow through high permeability porous beds. Trans. ASME J. Heat Transfer 106:865–870, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buchlin, JM., Stubos, A. (1991). Phase Change Phenomena at Liquid Saturated Self Heated Particulate Beds. In: Bear, J., Buchlin, JM. (eds) Modelling and Applications of Transport Phenomena in Porous Media. Theory and Applications of Transport in Porous Media, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2632-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2632-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5163-7

  • Online ISBN: 978-94-011-2632-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics