Advertisement

User Modelling in Knowledge-Based Systems

  • M. Felisa Verdejo
Chapter
Part of the Philosophical Studies Series book series (PSSP, volume 52)

Abstract

Computational models for interactive communication have been a growing area of activity in the last decade, both in theoretical investigation and as in practical implementations. Within this framework, we will pay attention to situations where different agents collaborate to solve a problem. In particular, we will now focus on the simplest form, considering two participants; a computer system and a user. Let us suppose they can communicate by formal, (restricted) natural language, graphics or any other means in order to achieve a given goal.

Keywords

Data Base System Knowledge Base System Prefer Learning Style Hierarchical Planning Fungal Meningitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [All-82]
    Allen, J., C. Perrault. Analyzing intention in utterances. Artificial Intelligence 15, pg. 143–178,1982.CrossRefGoogle Scholar
  2. [Bra-85]
    Brachman, R., H. Levesque. Readings in Knowledge Representation. Morgan Kaufmann, Los Altos California, 1985.Google Scholar
  3. [Bro-78]
    Brown, J., R. Burton. Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science, vol. 2, pg. 155–191. 1978.CrossRefGoogle Scholar
  4. [Cla-83]
    Clancey, W.J. The epistemology of a rule-based expert system: a frame work for explanation. Artificial Intelligence, vol. 20, no. 3, pg. 215–252.1983.CrossRefGoogle Scholar
  5. [Cla-86]
    Clancey, W.J. From GUIDON to NEOMYCIN and HERACLES in twenty short lessons: ONR final report 1979–1985.A I Magazine, vol. 7, no. 3, pg. 40–60.Google Scholar
  6. [Gar-89]
    Garijo, F.,M.F. Verdejo, A. Diaz, I. Fernadez, K. Sarasola. CAPRA: an intelligent system to teach novice programmers. In Perspectives of Artificial Intelligence. Campbell & Cuena exit. Vol. 2, Ellis Horwood International, 1989.Google Scholar
  7. [Kob-88]
    Kobsa, A., W. Wahlster. Special Issue on User modeling. Computational Linguistics, vol. 14, n°-3, Setiembre, 1988.Google Scholar
  8. [Lan-84]
    Langley, P., S. Ohlsson, S. Sage. Machine learning approach to student modelling. Technical Report CMU-RI-TR-84–7. Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1984.Google Scholar
  9. [Lit-84]
    Litman, D., J. Allen. A plan recognition model for clarification subdialogues. Proc of the 10th Int. Conf on Computational Linguistics. Google Scholar
  10. [Sea-69]
    Searle, J.Speech Acts: an essay in the Philosophy of Language. Cambridge University Press, Cambridge U.K. 1969.CrossRefGoogle Scholar
  11. [Sle-81]
    Sleeman, D., M.J. Smith. Modelling student’s problem solving. Artificial Intelligence, vol. 16, pg. 171–188. 1981.CrossRefGoogle Scholar
  12. [Sle-83]
    Sleeman, D. Inferring students models for intelligent computer-aided instruction. Machine Learning pg. 483–510. 1983.Google Scholar
  13. [Sle-84]
    Sleeman, D. A user-modelling front-end subsystem. Int. Jrnl Man-Machine Studies, vol. 23, n° 1, pg 71–88. 1984.Google Scholar
  14. [Ste-82]
    Stevens, A., A. Collins. Misconceptions in student’s understanding. En Intelligent Tutoring Systems. Brown, Sleeman (edt) Academic Press, 1982.Google Scholar
  15. [Spo-85]
    Spohrer, J., E. Soloway, E. Pope. A goal/plan analysis of buggy Pascal programs. Human-Computer Interaction, vol. 1, n°2, pg. 163–207.Google Scholar
  16. [Urr-88]
    Urretavizcaya, M., M.F. Verdejo. Estudio de modelos de estudiante y sistemas debugger de programacion: su disefio en CAPRA. Report Facultad de Informó tica 6/88. Barcelona, 1988.Google Scholar
  17. [Web-86]
    Weber, B. Questions, answers, and responses: interacting with Knowledge Base systems. En Brodie, M., (eds). On Knowledge Base Systems. Springer Verlag, Berlin, 1986.Google Scholar
  18. [Wil-88]
    Wilensky, R., D. Chin, M. Luria, J. Martin, J. Mayfield, and D. Wu. The Berkeley UMX Consultant Project. Computational Linguistics, vol. 14, n° 4, 1988.Google Scholar
  19. [Wen-87]
    Wenger, E. Artificial intelligence and Tutoring Systems. Computational and Cognitive approaches to the Communication of Knowledge. Morgan Kaufmann, 1987.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • M. Felisa Verdejo
    • 1
  1. 1.Universidad Politécnica de CataluñaSpain

Personalised recommendations