Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 369))

Abstract

Aqueous suspensions of submicron charge-stabilized colloid possess qualities which render them uniquely valuable as model systems for investigating the microscopic aspects of phase transitions in two and three dimensions. Amenable both to direct microscopic observation and also to macroscopic probes such as light diffraction, charged colloid can be manipulated or simply left alone and its progress charted as a model for a wide class of condensed matter systems. In a real sense, these suspensions act as analog molecular dynamics simulation test-beds. We discuss results of time-resolved video microscopy studies of the statics and dynamics of two- and three-dimensional suspensions of submicron polystyrene spheres. Highlights include evidence for continuous two-stage melting in two-dimensions with a hexatic fluid intervening between crystalline and isotropic fluid phases, comparison of this to apparently first-order melting of a three-dimensional crystalline layer into a dense layered fluid, and the dynamics of both types of suspensions near melting. We close with a brief overview of work in progress on kinetic phenomena and on applications to problems in other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russel, W. B.,Saville, D. A., and Schowalter, W. R. (1989) Colloidal Dispersions, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  2. Pieranski, P. (1983) “Colloidal Crystals”, Contemp. Phys. 24, 25.

    Article  ADS  Google Scholar 

  3. Hess, W. and Klein, R. (1983) “Generalized hydrodynamics of systems of Brownian particles”, Advances in Phys. 32, 173.

    Article  MathSciNet  ADS  Google Scholar 

  4. Homola, A. and James, R. O. (1977) “Preparation and characterization of amphoteric polystyrene latices” J. Colloid Interface Sci. 59, 123.

    Article  Google Scholar 

  5. Bockris, J. O’M. and Reddy, A. K. N. (1970) Modern Electrochemistry, Plenum Publishing Corporation, New York.

    Book  Google Scholar 

  6. Canessa, E.,Grimson, M. J., and Silbert, M.(1988) “Volume-dependent forces in charge-stabilized colloidal crystals”, Molecular Phys. 64, 1195.

    Article  ADS  Google Scholar 

  7. Canessa, E., Silbert, M., and Grimson, M. J. (1989) “Phase transitions in colloidal crystals - the role of attractive forces and finite particle-size”, Solid State Commun. 71, 1141.

    Article  ADS  Google Scholar 

  8. Verwey, E. J. W. and Overbeek, T. G. (1948) Theory of the Stability of Lyophobic Colloids,, Elsevier, New York.

    Google Scholar 

  9. Landau, L. D. and Lifshitz, E. M. (1959) Fluid Mechanics, trans. J. B. Sykes and W. H. Reid, Pergamon Press Inc., New York.

    Google Scholar 

  10. Happel, J. and Brenner, H. (1986) Hydrodynamics at Low Reynolds Numbers: Mechanics of Fluids and Transport Processes, Martinus Nijhoff Publishers, Boston.

    Google Scholar 

  11. Sirota, E. B., Ou-Yang, H. D., Sinha, S. K., Chaiken, P. M., Axe, J. D., and Fujii, Y. (1989)”Complete phase diagram of a charged colloid system - a synchrotron x-ray--scattering study”, Phys. Rev. Lett. 62, 1287.

    Article  Google Scholar 

  12. Monovoukas, Y. and Gast, A. P. (1989) “The experimental phase diagram of charged colloidal suspensions”, J. Colloid Interface Sci. 128, 533.

    Article  Google Scholar 

  13. Robbins, M. O., Kremer, K., and Grest, G. (1988) “Phase diagram and dynamics of Yukawa systems”, J. Chem. Phys. 88, 3286.

    Article  ADS  Google Scholar 

  14. Jackson, J. D. (1975) Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York.

    MATH  Google Scholar 

  15. Chang, E. and Hone, D. (1988) “Screened Coulomb interaction and melting in 2 dimensions”, J. Phys. 49, 25.

    Article  Google Scholar 

  16. Iler, R. K. (1979) The Chemistry of Silica, John Wiley & Sons, New York.

    Google Scholar 

  17. Van Winkle, D. H. and Murray, C. A. (1986) “Layering transitions in colloidal crystals as observed by diffraction and direct-lattice imaging”, Phys. Rev. A 34, 562.

    Article  ADS  Google Scholar 

  18. Murray, C. A. and Van Winkle, D. H. (1987) “Experimental observation of two-stage melting in a classical two-dimensional screened Coulomb system”, Phys. Rev. Lett., 58, 1200.

    Article  ADS  Google Scholar 

  19. Pieranski, P., Strzlecki, L., and Pansu, B. (1983) “Thin Colloidal Crystals”, Phys. Rev. Lett. 50, 900.

    Article  ADS  Google Scholar 

  20. Pansu, B., Pieranski, P., and Strzlecki, L. (1983) “Thin colloidal crystals: a series of structural transitions”, J. Phys. 44, 531.

    Article  Google Scholar 

  21. Clark, N. A., Ackerson, B. J., and Hurd, A. J. (1983) “Multidetector scattering as a probe of local structure in disordered phases”, Phys. Rev. Lett. 50, 1459.

    Article  ADS  Google Scholar 

  22. de Fontaine, D., Jackson, K. A., and Miller, C. E. (1969) “Optical diffractionfrom a two-dimensional array of spheres”, Am. J. Phys. 37, 789.

    Article  ADS  Google Scholar 

  23. Lindemann, F. A., (1910) “Molecular Frequencies”, Z. Phys. 11, 609.

    MATH  Google Scholar 

  24. Ziman, J. M. (1972) Principles of the Theory of Solids, Cambridge University Press, New York.

    Google Scholar 

  25. Hansen, J. P., and Verlet, L. (1969) “Phase Transitions of the Lennard-Jones System”, Phys. Rev. 184, 150.

    Article  ADS  Google Scholar 

  26. Kurz, W, and Fisher, D. J. (1989) Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Ltd., Switzerland.

    Google Scholar 

  27. Kosterlitz, J. M., and Thouless, D. (1973) “Ordering metastability and phase transitions in two-dimensional systems”, J. Phys. C 6, 1181.

    Article  ADS  Google Scholar 

  28. Halperin, B. I., and Nelson, D. (1978) “Theory of two-dimensional melting”, Phys. Rev. Lett. 41, 121.

    Article  MathSciNet  ADS  Google Scholar 

  29. Nelson, D., and Halperin, B. I. (1979) “Dislocation mediated melting in two-dimensions”, Phys.Rev. B 19, 2457.

    Article  ADS  Google Scholar 

  30. Young, A. P. (1979) “Melting and the vector Coulomb gas in two dimensions”, Phys. Rev. B 19,1855.

    Article  ADS  Google Scholar 

  31. Nelson, D. R. (1983) “Defect mediated phase transitions”, in Phase Transitions and Critical Phenomena, vol. 7, eds. C. Domb and J. L. Lebowitz, Academic Press, London, chapter 1.

    Google Scholar 

  32. Mermin, N. D., and Wagner, H. (1966) “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models”, Phys. Rev. Lett. 17, 1133.

    Article  ADS  Google Scholar 

  33. Landau, L. D., and Lifshitz, E. M. (1986) Theory of Elasticity, 3rd ed., rev. E. M. Lifshitz, A. M.Kosevich, and L. P. Pitaevskii, trans. J. B. Sykes and W. H. Reid, Pergamon Press, New York:.

    Google Scholar 

  34. Chui, S. T. (1983) “Grain-boundary theory of melting in two dimensions”, Phys. Rev. B 28, 178 .

    Article  ADS  Google Scholar 

  35. Kleinert, H. (1983) “Disclinations and first order transitions in 2D melting”, Phys. Lett. 95A, 381.

    MathSciNet  ADS  Google Scholar 

  36. Joos, B., and Duesberry, M. S. (1986) “Dislocation dipoles in rare-gas monopoles”, Phys. Rev. B 33, 8632.

    Article  ADS  Google Scholar 

  37. Ladd, A. J. C., and Hoover, W. G. (1982) “Energy and entropy of interacting dislocations”, Phys.Rev. B 26, 5469.

    Article  ADS  Google Scholar 

  38. Fisher, D. S., Halperin, B. I., and Morf, R. (1979) “Defects in the two-dimensional electron solid and implications for melting”, Phys. Rev B 20, 4692.

    Article  ADS  Google Scholar 

  39. Ramakrishnan, T. V., and Yusoff, M. (1979) “First-principles order-parameter theory of freezing”,Phys. Rev. B 19, 2775.

    Article  ADS  Google Scholar 

  40. Ramakrishnan, T. V. (1982) “Density-wave theory of first-order freezing in two-dimensions”,Phys. Rev. Lett. 48, 541.

    Article  ADS  Google Scholar 

  41. An excellent review of the experiments and simulations on two-dimensional melting is provided by Strandburg, K. J. (1988) “Two-dimensional melting”, Rev. Mod. Phys. 60, 161.

    Article  ADS  Google Scholar 

  42. Murray, C. A. and Wenk, R. A. (1989) “Microscopic particle motions and topological defects in two-dimensinoal hexatics and dense fluids”, Phys. Rev. Lett. 62, 1643.

    Article  ADS  Google Scholar 

  43. Murray, C. A., Sprenger, W. O., and Wenk, R. A. (1990) “Comparison of melting in three and two dimensions: Microscopy of colloidal spheres”, Phys. Rev. B 42, 688.

    Article  ADS  Google Scholar 

  44. Murray, C. A., Van Winkle, D. H., and Wenk, R. A. (1990) “Digital imaging studies of submicron colloidal spheres confined into a single layer between two smooth glass plates: Two dimensional melting”, Phase Trans. 21, 93 .

    Article  Google Scholar 

  45. Tang, Y., Armstrong, A. J., Mockler, R. C., and O’Sullivan, W. J. (1989) “Free expansion melting of a colloidal monolayer”, Phys. Rev. Lett. 62, 2401 .

    Article  ADS  Google Scholar 

  46. Tang, Y., Armstrong, A. J. , Mockler, R. C., and O’Sullivan, W. J. (1990) “Study of free expansion melting in 2D”, Phase. Trans. 21, 75 .

    Article  Google Scholar 

  47. Murray, C. A. (1991) “Experimental studies of melting and hexatic order in two-dimensional colloidal suspensions” in Bond Orientational Order in Condensed Matter Systems, ed. K. J. Strandburg, Springer-Verlag, Berlin, in publication.

    Google Scholar 

  48. Bohren, C. F., and Hoffman, D. R. (1983) Absorption and Scattering of Light by Small Particles,Wiley-Interscience, New York.

    Google Scholar 

  49. Barton, J. P., Alexander, D. R., and Schaub, S. A. (1989) “Internal fields of a spherical particle illuminated by a tighly focussed laser beam: Focal point positional effects at resonance”, J. Appl.Phys. 65, 2900.

    Article  ADS  Google Scholar 

  50. [50]Murray, C. A. (in preparation).

    Google Scholar 

  51. Inoue, S. (1986) Video Microscopy, Plenum Press, New York.

    Google Scholar 

  52. Gonzalez, R. C., and Wintz, P. (1987) Digital Image Processing, Addison-Wesley Publishing Co.,Reading, Massachusetts.

    Google Scholar 

  53. Nieman, H. (1990) Pattern Analysis and Understanding, Springer-Verlag, New York.

    Google Scholar 

  54. Van Winkle, D. H., and Murray, C. A. (1988) “Layering in colloidal fluids near a smooth repulsive wall”, J. Chem. Phys. 89, 3885.

    Article  ADS  Google Scholar 

  55. Preparata, F. P., and Shamos, M. I. (1987) Computational Geometry, an Introduction, Springer-Verlag, New York.

    Google Scholar 

  56. Fortune, S. (1987) “A sweepline algorithm for Voronoi diagrams”, Algorithmica 2, 153 .

    Article  MathSciNet  MATH  Google Scholar 

  57. Magda, J. J., Tirrell, M., and David, H. T. (1985), J. Chem. Phys. 83, 1888, and references therein.

    Article  ADS  Google Scholar 

  58. Evans, R. (1989) “Microscopic theories of simple fluids and their interfaces”, in Liquids at Interfaces (Les Houches Session XLVIII, 1988), eds. J. Charolin, J. F. Joanny, and J. Zinn-Justin, Elsevier, Amsterdam, chapter 1.

    Google Scholar 

  59. Pusey, P. N., and Tough, R. J. A. (1982) “Langevin approach to the dynamics of interacting Brownian particles”, J. Phys. A: Math. Gen. 15, 1291.

    Article  ADS  Google Scholar 

  60. Nagele, G., Medina-Noyola, M., Klein, R., and Arauza-Lara, J. L. (1988) “Time-dependent selfdiffusion in model suspensions of highly charged Brownian particles”, Physica A 149, 123.

    Article  ADS  Google Scholar 

  61. Clark, N. A., and Ackerson, B. J. (1980) “Observation of the coupling of concentration fluctuations to steady-state shear flow”, Phys. Rev. Lett. 44, 1005.

    Article  ADS  Google Scholar 

  62. Ackerson, B. J., and Clark, N. A. (1981) “Shear-induced melting”, Phys. Rev. Lett. 46, 123.

    Article  ADS  Google Scholar 

  63. Xue, W., and Grest, G. S. (1990) “Shear-induced alignment of colloidal particles in the presence of a shear flow”, Phys. Rev. Lett. 64, 419.

    Article  ADS  Google Scholar 

  64. Ackerson, B. J., and Clark, N. A. (1988) “Shear-induced order in suspensions of hard spheres”, Phys. Rev. Lett. 61, 1033.

    Article  ADS  Google Scholar 

  65. Gruner, G. (1988) “The dynamics of charge density waves”, Rev. Mod. Phys. 60, 1129.

    Article  ADS  Google Scholar 

  66. Huebener, R. P. (1979) Magnetic Flux Structures in Superconductors, Springer-Verlag, New York..

    Google Scholar 

  67. Murray, C. A., Gammel, P. L., and Bishop, D. J. (1990) “Observation of a hexatic vortex glass in flux lattices of the high-Tc superconductor Bi2.1Sr1.9Ca0.9CU208+Δ”, Phys. Rev. Lett. 64, 2312 .

    Article  ADS  Google Scholar 

  68. Grier, D. G., Murray, C. A., Bolle, C. A., Gammel, P. L., Bishop, D. J., Mitzi, D. B., and Kapitulnik, A. (1991) “Translational and bond-orientational order in the vortex lattice of the high-Tc superconductor Bi2.1Sr1.9Ca0.9Cu208+δ”, Phys. Rev. Lett. 66, 2270.

    Article  ADS  Google Scholar 

  69. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S. (1986) “Observation of a single-beam gradient force optical trap for dielectric particles”, Optics Lett. 11, 288.

    Article  ADS  Google Scholar 

  70. Coppersmith, S. N. (1990) “Phase slips and the instability of the Fukuyama-Lee-Rice model of charge density waves”, Phys. Rev. Lett. 65, 1044.

    Article  ADS  Google Scholar 

  71. Coppersmith, S. N. (1991) “A simple model with 1/f noise in three dimensions: Application to sliding charge density waves”, (preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grier, D.G., Murray, C.A. (1992). Video Microscopy of Charge-Stabilized Colloidal Suspensions. In: Chen, SH., Huang, J.S., Tartaglia, P. (eds) Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution. NATO ASI Series, vol 369. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2540-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2540-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5122-4

  • Online ISBN: 978-94-011-2540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics