Skip to main content

Dissolved organic carbon in a humic lake: effects on bacterial production and respiration

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 73))

Abstract

Allochthonous matter was the main source of carbon for pelagic bacteria in a humic lake, accounting for almost 90% of the carbon required to support observed bacterial growth. The estimated contribution from Zooplankton excretion was of the same magnitude as direct phytoplankton release, both accounting for 5–7% of bacterial demands for dissolved carbon. Bacteria were an important source of carbon both for heterotrophic phytoplankton and for filter feeding Zooplankton species, further stressing the role of humus DOC in overall lake productivity.

The high contribution of allochthonous DOC implies a stoichiometry of dissolved nutrients with a surplus of C relative to P. The high P cell quota of bacteria suggest that under such conditions they are P-limited and act like net consumers of P. Excess C will be disposed of, and bacterial respiration rate will increase following a transition from carbon-limited bacterial growth towards mineral-nutrient-limited growth. Thus the high community respiration and frequentCO2-supersaturation in humic lakes may be caused not only by the absolute supply of organic C, but also by the stoichiometry of the dissolved nutrient pool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Bell, W. & E. Sakshaug, 1980. Bacterial utilization of algal extracellular products. 2. A kinetic study of natural populations. Limnol. Oceanogr. 25: 1021–1033.

    Article  Google Scholar 

  • Bell, R. T., G. M. Ahlgren & I. Ahlgren, 1983. Estimating bacterioplankton production by measuring [3H] thymidine incorporation in a eutrophic Swedish lake. Appl. envir. Microbiol. 45: 1709–1721.

    CAS  Google Scholar 

  • Bell, R. T. & J. Kuparinen, 1984. Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden. Appl. envir. Microbiol. 48: 1221–1230.

    CAS  Google Scholar 

  • Brock, T. D. & J. Clyne, 1984. Significance of algal excretory products for growth of epilimnic bacteria. Appl. envir. Microbiol. 47: 731–734.

    CAS  Google Scholar 

  • Cole, J. J., G. E. Likens & D. L. Strayer, 1982. Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria. Limnol. Oceanogr. 27: 1080–1090.

    Article  CAS  Google Scholar 

  • Coveney, M. F., 1982. Bacterial uptake of photo synthetic carbon from freshwater phytoplankton. Oikos 38: 8–20.

    Article  CAS  Google Scholar 

  • Droop, M. R., 1974. The nutrient status of algal cells in continuous culture. J. mar. biol. Assoc. U.K. 54: 825–855.

    Article  CAS  Google Scholar 

  • Fuhs, G. W., S. D. Demerle, E. Canelli & M. Chen, 1972. Characterization of phosphorus-limited algae. Am. Soc. Limnol. Oceanogr. Spec. Symp. 1: 113–132.

    CAS  Google Scholar 

  • De Haan, H., 1974. Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (the Netherlands). Freshwat. Biol. 4: 301–310.

    Article  Google Scholar 

  • Hessen, D. O., 1985. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbiol. Ecol. 31: 215–223.

    Article  CAS  Google Scholar 

  • Hessen, D. O., 1989. Factors determining the nutritive status and production of Zooplankton in a humic lake. J. Plankton Res. 11: 649–664.

    Article  CAS  Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1989. Differential grazing and resource utilization of Zooplankton in a humic lake. Arch. Hydrobiol. 114: 321–347.

    Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake; pool sizes and cycling through Zooplankton. Limnol. Oceanogr. 35: 84–99.

    Article  CAS  Google Scholar 

  • Hessen, D. O. & T. Andersen, 1990. Bacteria as a source of phosphorus for Zooplankton. Hydrobiologia 206: 217–223.

    Article  CAS  Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of nucleopore filters for counting bacteria by fluorescent microscopy. Appl. Envir. Microbiol. 33: 1225–1228.

    CAS  Google Scholar 

  • Jensen, L. M. & S. Schwærter, 1988. Major pathways involved in the utilization of primary production in a temperature eutrophic lake. Verh. int. Ver. Limnol. 23: 445–450.

    Google Scholar 

  • Jensen, L. M. & M. Søndergaard, 1985. Comparison of two methods to measure algal release of dissolved organic carbon and the subsequent uptake by bacteria. J. Plankton Res. 7: 41–56.

    Article  Google Scholar 

  • Johansson, J. Å., 1983. Seasonal development of bacterio-plankton in two forest lakes in central Sweden. Hydrobiologia 101: 71–88.

    Article  Google Scholar 

  • Jones, R. I. & K. Salonen, 1985. The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland. Holarct. Ecol. 8: 133–140.

    Google Scholar 

  • Jordan, M. & G. E. Likens, 1980. Measurement of planktonic bacterial production in an oligotrophic lake. Limnol. Oceanogr. 25: 719–732.

    Article  CAS  Google Scholar 

  • Lampert, W., 1978. Release of dissolved organic carbon by grazing Zooplankton. Limnol. Oceanogr. 23: 831–834.

    Article  CAS  Google Scholar 

  • Larsson, U. & Å. Hagstrøm, 1982. Fractionated phytoplankton primary production, exudate release, and bacterial production in a baltic eutrophication gradient. Mar. Biol. 67: 57–70.

    Article  Google Scholar 

  • Lovell, C. R. & A. Konopka, 1985. Primary and bacterial production in two dimictic Indiana lakes. Appl. envir. Microbiol. 49: 485–491.

    CAS  Google Scholar 

  • Murray, R. E. & R. E. Hodson, 1985. Annual cycle of bacterial production in five aquatic habitats of the Okefenokee Swamp ecosystem. Appl. envir. Microbiol. 49: 650–655.

    CAS  Google Scholar 

  • Olsen, Y., A. Jensen, H. Reinertsen, Y. Børsheim, M. Heldal & A. Langeland, 1986. Dependence on the rate of release of phosphorus by Zooplankton on the P:C-ratio in the food supply as calculated by the recycling model. Limnol. Oceanogr. 31: 34–44.

    Article  Google Scholar 

  • Riemann, B., M. Søndergaard, H.-H. Schierup, S. Bossel-mann, G. Christensen, J. Hansen & B. Nilsen, 1982. Carbon metabolism during a spring peak in the eutrophic Lake Mossø. Int. Revue ges. Hydrobiol. 67: 145–185.

    CAS  Google Scholar 

  • Riemann, B. & M. Søndergaard, 1986. Regulations of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plankton Res. 8: 519–536.

    Article  CAS  Google Scholar 

  • Salonen, K., 1981. The ecosystem of the oligotrophic Lake Paajarvi. 2. Bacterioplankton. Verh. int. Ver. Limnol. 21: 448–453.

    Google Scholar 

  • Salonen, K., K. Kolonen & L. Arvola, 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70.

    Article  Google Scholar 

  • Søndergaard, M. B., B. Riemann & N. O. G. Jørgensen, 1985. Extracellular organic carbon (EOC) released by phytoplankton and bacterial production. Oikos 45: 323–332.

    Article  Google Scholar 

  • Tempest, D. W., O. M. Neijssel & M. J. Teixeira de Mattos, 1985. Regulation of carbon substrate metabolism in bacteria growing in chemostat culture. In I. S. Kulaev, E. W. Dawes & D. W. Tempest (eds) Environmental regulation of bacterial metabolism. Acad. Press., New York, p. 53–69.

    Google Scholar 

  • Thingstad, T. F., 1987. Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostate theory with a consistent concept of ’maintenance’ metabolism. Mar. Ecol. Progr. Ser. 35: 99–109.

    Article  CAS  Google Scholar 

  • Tranvik, L., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. & M. Hofle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.

    CAS  Google Scholar 

  • Vadstein, O. & Y. Olsen, 1989. Chemical composition and phosphate uptake kinetics of limnetic bacterial communities cultured in chemostats under phosphorus limitation. Limnol. Oceanogr. 34: 939–946.

    Article  CAS  Google Scholar 

  • Vadstein, O., B. O. Harkjerr, A. Jensen, Y. Olsen & H. Reinertsen, 1989. Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the heterotrophic bacteria. Limnol. Oceanogr. 34: 840–855.

    Article  CAS  Google Scholar 

  • Vollenweider, R. A. (Ed.), 1969. A manual on methods for measuring primary production in aquatic environments. IBP-handbook no. 12, Blackwell Sci. Publ. Oxford. 214 pp.

    Google Scholar 

  • Watson, S. W., T. J. Novitsky, H. L. Quinby & F. M. Velois, 1977. Determination on bacterial number and biomass in the marine environment. Appl. envir. Microbiol. 33: 940–946.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Salonen T. Kairesalo R. I. Jones

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hessen, D.O. (1992). Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. In: Salonen, K., Kairesalo, T., Jones, R.I. (eds) Dissolved Organic Matter in Lacustrine Ecosystems. Developments in Hydrobiology, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2474-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2474-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5092-0

  • Online ISBN: 978-94-011-2474-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics