Skip to main content

Extracellular enzymes in a polyhumic lake: important regulators in detritus processing

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 73))

Abstract

Eight extracellular enzymes and their corresponding natural substrates were studied in an acid polyhumic lake. Highest activities were found for phosphatases (100–150 nmol l-1 h-1), glucosidase (70–120 nmol l-1 h-1) and aminopeptidases (20–30 nmol l-1 h-1). Significant relationships were found for natural polymeric substrate composition, variation and enzyme activities. Identified carbohydrates and amino acids contributed 1–5% to the DOC pool and are assumed to undergo significant processing by microbial glycosidases and aminopeptidases. Measured enzymes are partially modified in their activity by lake water acidity, temperature and humic matter. Extracellular enzymes are regarded as important regulators in microbial detritus processing and substrate utilization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammerman, J. W. & F. Azam, 1985. Bacterial 5’-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 277: 1338–1340.

    Article  Google Scholar 

  • Arvola, L., 1986. Spring phytoplankton of 54 small lakes in Southern Finland. Hydrobiologia 137: 125–134.

    Article  Google Scholar 

  • Arvola, L. & M. Rask, 1984. Relations between phytoplankton and environmental factors in a small, spring-meromictic lake in Southern Finland. Aqua fenn. 14: 129–138.

    CAS  Google Scholar 

  • Azam, F. & B. C. Cho, 1987. Bacterial utilization of organic matter in the sea. In M. Fletcher, T. R. G. Gray & J. G. Jones (eds.), Ecology of Microbial Communities, Cambridge University Press, 261–281.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L.-A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Article  Google Scholar 

  • Bergström, I., A. Heinänen & K. Salonen, 1986. Comparison of acridine orange, acriflavine, and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl. envir. Microbiol. 51: 664–667.

    Google Scholar 

  • Billén, G., 1984. Heterotrophic utilization and regeneration of nitrogen. In J. E. Hobbie & P. J. leB Williams, (eds), Heterotrophic activity in the sea. NATO SAD, Plenum Press, 1984, 313–355.

    Chapter  Google Scholar 

  • Cannell, R. J. P., S. J. Kellam, A. M. Owsianka & J. M. Walker, 1987. Microalgae and Cyanobacteria as a source ofglycosidaseinhibitors. J. gen. Microbiol. 133: 1701–1705.

    PubMed  CAS  Google Scholar 

  • Cannell, R. J. P., S. J. Kellam, A. M. Owsianka & J. M. Walker, 1988a. Results of a large scale screen of microalgae for the production of protease inhibitors. Planta Medica 54: 10–14.

    Article  PubMed  CAS  Google Scholar 

  • Cannell, R. J. P., P. Farmer & J. M. Walker, 1988b. Purification and characterization of pentagalloylglucose, an α-glycosidase inhibitor/antibiotic from the freshwater gree alga Spirogyra varians. Biochem. J. 255: 937–941.

    PubMed  CAS  Google Scholar 

  • Christman, R. F. & E. T. Gjessing, 1983. Aquatic and Terrestrial Humic Materials. Ann Arbor Sci. Publ. 538 pp.

    Google Scholar 

  • Chróst, R. J., 1989. Characterization and significance of ß-glycosidase activity in lake water. Limnol. Oceanogr. 34: 660–672.

    Article  Google Scholar 

  • Chróst, R. J., 1990. Ectoenzymes in aquatic environments: origin, activity and ecological significance. In J. Overbeck & R. J. Chróst (eds.), Advanced biochemical and molecular approaches to Aquatic Microbial Ecology. Brock/Springer Series in Contemporary Bioscience, by Springer Verlag Berlin, 1990, p. 47-78.

    Google Scholar 

  • Chróst, R. J., U. Münster, H. Rai, D. Albrecht, P. K. Witzel & J. Overbeck, 1989. Photo synthetic production and exoenzymatic degradation of organic matter in euphotic zone of an eutrophic lake. J. Plankton. Res. 11: 223–242.

    Article  Google Scholar 

  • Chróst, R. J. & J. Overbeck, 1989. Application of the isotope dilution principle to the determination of [14C]-glucose incorporation by aquatic bacteria. Acta Microbiol. Polon. 38: 75–89.

    Google Scholar 

  • De Haan, H., 1974. Effect of a Fulvic Acid fraction on the growth of a Pseudomonas from Tjeukemeer (the Netherlands). Freshwat. Biol. 4: 301–310.

    Article  Google Scholar 

  • De Haan, H., 1977. Effect of Benzoate on microbial decomposition of Fulvic Acids in Tjeukemeer (The Netherlands). Limnol. Oceanogr. 22: 38–44.

    Article  Google Scholar 

  • Fenchel, T., 1987. The ecology of heterotrophic microflagellates. Adv. microbial Ecol. 9: 57–97.

    Google Scholar 

  • Haslam, E., 1974. Polyphenol-Protein Interactions. Biochem. J. 139: 285–288.

    PubMed  CAS  Google Scholar 

  • Hollibaugh, J. T. & F. Azam, 1983. Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28: 1104–1116.

    Article  CAS  Google Scholar 

  • Hoppe, H.-G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Progr. Ser. 11: 299–308.

    Article  CAS  Google Scholar 

  • Hoppe, H.-G., S. J. Kim & K. Gocke, 1988. Microbial decomposition in aquatic environments: combined processes of extracellular enzyme activity and substrate uptake. Appl. envir. Microbiol. 54: 784–790.

    CAS  Google Scholar 

  • Ilmavirta, V., 1983. The role of flagellated phytoplankton in chains of small brown-water lakes in southern Finland. Ann. bot. fenn. 20: 187–195.

    CAS  Google Scholar 

  • Ilmavirta, V., 1988. Phytoflagellates and their ecology in Finnish brown-water lakes. Hydrobiologia 161: 255–270.

    Article  CAS  Google Scholar 

  • Jannasch, H., 1970. Threshold concentration of carbon sources limiting bacterial growth in seawater. In D. W. Hood (ed), Symposium on organic matter in natural waters. Univ. Alaska, Mar. Sci. Occ. Publ. No. 1: 321–330.

    Google Scholar 

  • Johansson, J. A., 1983. Seasonal development of bacterioplankton in two forest lakes in Central Sweden. Hydrobiologia 101: 71–87.

    Article  Google Scholar 

  • Jones, R. I. & L. Arvola, 1984. Light penetration and some related characteristics in small forest lakes in southern Finland. Verh. int. Ver. Limnol. 22: 811–816.

    Google Scholar 

  • Jørgensen, N. O. G., 1982. Heterotrophic assimilation and occurrence of dissolved free amino acids in a shallow estuary. Mar. Ecol. 8: 145–159.

    Article  Google Scholar 

  • Jørgensen, N. O. G., 1987. Free amino acids in lakes: Concentrations and assimilation rates in relation to phytoplankton and bacterial production. Limnol. Oceanogr. 32: 97–111.

    Article  Google Scholar 

  • Lindroth, P. & K. Mopper, 1979. High performance liquid Chromatographie determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldehyde. Analyt. Chem. 51: 1667–1674.

    Article  CAS  Google Scholar 

  • McManus, J. P., K. G. Davis, J. E. Beart, S. H. Gaffney, T. H. Lilley & E. Haslam, 1985. Polyphenol Interactions. Part 1. Introduction; Some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc. Perkin Trans. II: 1419–1438.

    Google Scholar 

  • Meyer-Reil, L.-A., 1986. Measurements of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments. Mar. Ecol. Progr. Ser. 31: 143–149.

    Article  CAS  Google Scholar 

  • Münster, U., 1984. Distribution, dynamic and structure of free dissolved carbohydrates in the Plußsee, a North German eutrophic lake. Verh. int. Ver. Limnol. 22: 929–935.

    Google Scholar 

  • Münster, U., 1985. Investigations about structure, distribution and dynamics of different organic substrates in the DOM of lake Plußsee. Arch. Hydrobiol., Suppl. 70: 429–480.

    Google Scholar 

  • Münster, U., 1991. Extracellular Enzyme Activity in Eutrophic and Polyhumic Lakes. In R. J. Chróst (ed.) Microbial Enzymes in Aquatic Environments, Brock/Springer Series in Contemporary Bioscience, by Springer Verlag, 1991, in press.

    Google Scholar 

  • Münster, U., P. Einiö & J. Nurminen, 1989. Evaluation of the measurements of extracellular enzyme activities in a polyhumic lake by means of studies with 4-methylumbelliferylsubstrates. Arch. Hydrobiol. 115: 321–337.

    Google Scholar 

  • Münster, U. & R. J. Chróst, 1990. Dissolved organic matter (DOM) in aquatic environments: origin, distribution, composition and microbial utilization. In J. Overbeck & R. J. Chróst, (eds), Advanced Biochemical and Molecular Approaches to Aquatic Microbial Ecology, Brock/Springer Series in Contemporary Bioscience, by Springer Verlag 1990, p. 8–46.

    Google Scholar 

  • Olsson, L. & O. Samuelson, 1974. Chromatography of aromatic acids and phenolics on cross-linked polyvinylpyrrolidone. J. Chromatogr. 93: 189–199.

    Article  CAS  Google Scholar 

  • Overbeck, J., 1979. Studies on the heterotrophic function and glucose metabolism of microplankton in Plußsee. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 56–76.

    CAS  Google Scholar 

  • Pigman, W. & E. F. L. J. Anet, 1972. Mutarotations and actions of acids and bases. In W. Pigman & D. Horton, D. (eds), The Carbohydrates, Chemistry and Biochemistry, Second Edition, Academic Press, New York, 1772, pp. 165–193.

    Google Scholar 

  • Pollock, M. R., 1962. Exoenzymes. In I. C. Gunsalus & R. Y. Stanier, (eds), The Bacteria, Academic Press, New York, Vol. 2: 121–178.

    Google Scholar 

  • Pomeroy, L. R., 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499–504.

    Article  Google Scholar 

  • Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 156: 7–18.

    Article  Google Scholar 

  • Priest, F. G., 1984. Extracellular Enzymes, Aspects of Microbiology 9, Van Nostrand Reinhold (UK) Co. Ltd. pp. 79.

    Google Scholar 

  • Rogers, H. J., 1961. The dissimilation of high molecular weight organic substrates. In I. C. Gunsalus & R. Y. Stanier (eds.), The Bacteria, Academic Press, New York, Vol. 2: 261–318.

    Google Scholar 

  • Salonen, K., 1981. The ecosystem of the oligotrophic lake Pääjärvi. 2. Bacterioplankton. Verh. int. Ver. Limnol. 21: 448–453.

    Google Scholar 

  • Salonen, K., 1984. Peculatities in the limnology of small polyhumic lakes. Lammi Notes 11: 5–7.

    Google Scholar 

  • Salonen, K. & T. Hammar, 1986. On the importance of dissolved organic matter in the nutrition of Zooplankton in some lakes waters. Oecologia 68: 246–253.

    Article  Google Scholar 

  • Salonen, K. & S. Jokinen, 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209.

    Article  Google Scholar 

  • Salonen, K., K. Kononen & L. Arvola, 1983. Respiration of plankton in two small polyhumic lakes. Hydrobiologia 101: 65–70.

    Article  Google Scholar 

  • Salonen, K. & T. Tulonen, 1990. Photochemical and biological transformation of dissolved humic substances. Verh. int. Ver. Limnol. 24: 294.

    Google Scholar 

  • Schütt, C., 1988. Plasmid-DNA in natural bacterial populations of four brownwater lakes (South Sweden). Arch. Hydrobiol. Beih. 31: 133–139.

    Google Scholar 

  • Sieburth McN, J., 1979. Sea Microbes. Oxford Univ. Press, New York. 420 pp.

    Google Scholar 

  • Somville, M., 1984. Measurement and study od substrate specificity of exoglucosidase activity in eutrophic water. Appl. envir. Microbiol. 48: 1181–1185.

    CAS  Google Scholar 

  • Sorokin, Y. I., 1977. The heterotrophic phase of plankton succession in the Japan Sea. Mar. Biol. 41: 107–117.

    Article  Google Scholar 

  • Steinberg, C. & U. Münster, 1985. Geochemistry and ecological role of humic substances in lakewater. In G. R.Aiken, D. M. McKnight, R. L. Wershaw & P. MacCarthy (eds), Humic substances in Soil, Sediment and Water. Geochemistry, Isolation, and Characterization. J. Wiley & Sons, N.Y., p. 105-145.

    Google Scholar 

  • Stuermer, D. H., I. R. Kaplan & K. E. Peters, 1978. Source indicators of humic substances and proto-kerogen. Stable isotope ratios, elemental compositions and electron spin resonance spectra. Geochim. Cosmochim. Acta 42: 989–997.

    Article  CAS  Google Scholar 

  • Thurman, M., 1985. Organic Geochemistry of Natural Waters. Nijhoff/Junk Publ., Boston, 350 pp.

    Book  Google Scholar 

  • Tranvik, L., 1989. Bacteriaplankton growth, grazing mortality and quantitative relationship to primary production in a humic and clearwater lake. J. Plankton. Res. 11: 985–1000.

    Article  Google Scholar 

  • Tranvik, L. & M. Höfle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.

    CAS  Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd ed. Saunders College, Philadelphia, 830 pp.

    Google Scholar 

  • Wetzel, R. G., 1984. Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull. Mar. Sci. 35: 503–509.

    Google Scholar 

  • Wetzel, R. G., 1991. Extracellular enzymatic interactions in aquatic ecosystems: storage, redistribution, and interspecific communication. In: R. J. Chróst (ed.), Microbial Enzymes in Aquatic Environments, Brock/Springer Series in Contemporary Bioscience, by Springer Verlag, in press.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1979. Limnological Analyses, W. B. Saunders Company, Philadelphia, 151-156.

    Google Scholar 

  • Williams, P. J. leB, 1981. Incorporation ofmicroheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch. Sonderh. 5: 1–28.

    Google Scholar 

  • Winberg, G. G., 1980. General characteristics of freshwater ecosystems based on Soviet IBP studies. In: E. D. Le Cren & R. H. Lowe-McConnell (eds.), The functioning of Freshwater Ecosystems. IBP 22, Cambridge Univ. Press., p. 481-491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Salonen T. Kairesalo R. I. Jones

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Münster, U., Einiö, P., Nurminen, J., Overbeck, J. (1992). Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. In: Salonen, K., Kairesalo, T., Jones, R.I. (eds) Dissolved Organic Matter in Lacustrine Ecosystems. Developments in Hydrobiology, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2474-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2474-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5092-0

  • Online ISBN: 978-94-011-2474-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics