Skip to main content

Scintigraphic assessment of cardiac innervation using iodine-123 metaiodobenzylguanidine

  • Chapter
Book cover What’s New in Cardiac Imaging?

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 133))

Abstract

Autonomic imbalance, through differential effects of catecholamines, has long been hypothesized as a major mechanism leading to a number of clinical disorders, particularly those involving the heart [1]. The largest source of catecholamines is found in the sympathetic nerves of the heart, which are distributed on a regional basis [2]. Only in the past few years has it been possible to evaluate abnormalities in heart innervation in the intact animal. Recent developments in cardiac imaging have led to the ability to map the distribution of the sympathetic nerves in vivo. As a result, the pathophysiologic mechanisms relating alterations in sympathetic nerve activity to disease processes are now being explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manger WM. Adrenergic involvement in cardiac pathophysiology. Adv Cardiol 1982; 30: 74–107.

    Google Scholar 

  2. Randall WC. Nervous control of cardiovascular function. New York: Oxford University Press, 1984.

    Google Scholar 

  3. Whitby LG, Axelrod J, Weil-Malherbe H. The fate of 3H-norepinephrine in animals. J Pharmacol Exp Ther 1961; 132: 193–201.

    PubMed  CAS  Google Scholar 

  4. Iversen LL. Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol 1971; 41: 571–91.

    Article  PubMed  CAS  Google Scholar 

  5. Lightman SL, Iversen LL. The role of uptake in the extraneuronal metabolism of catecholamines in the isolated rat heart. Br J Pharmacol 1969; 37: 638–49.

    Article  PubMed  CAS  Google Scholar 

  6. Kopin I. False adrenergic transmitters. Annu Rev Pharmacol 1968; 8: 377–94.

    Article  PubMed  CAS  Google Scholar 

  7. Wieland DM, Wu JL, Brown LE, Mangner TJ, Swanson DP, Beierwalters WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with (131-1) Iodoben-zylguanidine. J Nucl Med 1980; 21: 349–53.

    PubMed  CAS  Google Scholar 

  8. Kline RC, Swanson DP, Wieland DM et al. Myocardial imaging in man with I-123 metaiodobenzylguanidine. J Nucl Med 1981; 22: 129–32.

    PubMed  CAS  Google Scholar 

  9. Manger WM, Hoffman BB. Heart imaging in the diagnosis of pheochromocytoma and assessment of catecholamine uptake [editorial]. J Nucl Med 1983; 24: 1194–6.

    PubMed  CAS  Google Scholar 

  10. Wieland DM, Brown LE, Rogers WL et al. Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med 1981; 22: 22–31.

    PubMed  CAS  Google Scholar 

  11. Sisson JC, Wieland DM, Sherman P, Mangner TJ, Tobes MC, Jacques S. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function. J Nucl Med 1987; 28: 1620–4.

    PubMed  CAS  Google Scholar 

  12. Dae MW, O’Connell W, Chin MC, Herre JM, Huberty JP, Botvinick EH. Scintigraphic assessment of global adrenergic nerve density with MIBG washout maps [abstract]. J Am Coll Cardiol 1988; 11(2 Suppl A): 214A.

    Google Scholar 

  13. Sisson JC, Bolgas G, Johnson J. Measuring acute changes in adrenergic nerve activity of the heart in the living animal. Am Heart J 1991; 121: 1119–23.

    Article  PubMed  CAS  Google Scholar 

  14. Dae MW, O’Connell JW, Botvinick EH et al. Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation 1989; 79: 634–44.

    Article  PubMed  CAS  Google Scholar 

  15. Sisson JC, Lynch JJ, Johnson J et al. Scintigraphic detection of regional disruption of adrenergic neurons in the heart. Am Heart J 1988; 116: 67–76.

    Article  PubMed  CAS  Google Scholar 

  16. Mori H, Pisarri TE, Aldea GS et al. Usefulness and limitations of regional cardiac sympathectomy by phenol. Am J Physiol 1989; 257: H1523–33.

    Google Scholar 

  17. Barber MJ, Mueller TM, Henry DP, Feiten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation 1983; 67: 787–96.

    Article  PubMed  CAS  Google Scholar 

  18. Herre J, Wetstein L, Lin YL, Mills AS, Dae M, Thames MD. Effect of transmural versus nontransmural myocardial infarction on inducibility of ventricular arrhythmias during sympathetic stimulation. J Am Coll Cardiol 1988; 11: 414–21.

    Article  PubMed  CAS  Google Scholar 

  19. Dae M, Herre J, O’Connell J, Botvinick E, Newman D, Munoz L. Scintigraphic assessment of sympathetic innervation after transmural versus nontransmural myocardial infarction. J Am Coll Cardiol 1991; 17: 1416–23.

    Article  PubMed  CAS  Google Scholar 

  20. Minardo JD, Tuli MM, Mock BH et al. Scintigraphic and electrophysiologic evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988; 78: 1008–19.

    Article  PubMed  CAS  Google Scholar 

  21. Inoue H, Zipes D. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation 1987; 75: 877–87.

    Article  PubMed  CAS  Google Scholar 

  22. Dae MW, DeMarco T, Botvinick EH, Hattner RH, Ratzlaff NW, Huberty JH. Absence of extraneuronal uptake of MIBG following cardiac transplantation [abstract]. J Nucl Med 1990; 31: 792.

    Google Scholar 

  23. Dae M, Herre J, Botvinick E et al. Scintigraphic assessment of adrenergic innervation after myocardial infarction [abstract]. Circulation 1986; (4 Suppl II): II 297.

    Google Scholar 

  24. Stanton MS, Tuli MM, Radtke NL et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine. J Am Coll Cardiol 1989; 14: 1519–26.

    Article  PubMed  CAS  Google Scholar 

  25. Sisson JC, Shapiro B, Meyers L et al. Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man. J Nucl Med 1987; 28: 1625–36.

    PubMed  CAS  Google Scholar 

  26. Nakajo M, Shimabukuro K, Miyaji N et al. Rapid clearance of iodine-131 MIBG from the heart and liver of patients with adrenergic dysfunction and pheochromocytoma. J Nucl Med 1985; 26: 357–65.

    PubMed  CAS  Google Scholar 

  27. Henderson EB, Kahn JK, Corbett JR et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation 1988; 78: 1192–9.

    Article  PubMed  CAS  Google Scholar 

  28. Taki J, Nakajima K, Bunko H, Simizu M, Muramori A, Hisada K. Whole-body distribution of iodine 123 metaiodobenzylguanidine in hypertrophic cardiomyopathy: significance of its washout from the heart. Eur J Nucl Med 1990; 17: 264–8.

    Article  PubMed  CAS  Google Scholar 

  29. Schofer J, Spielmann R, Schuchert A, Weber K, Schluter M. Iodine-123 meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1988; 12: 1252–8.

    Article  PubMed  CAS  Google Scholar 

  30. Richalet J, Merlet P, Bourguignon J et al. MIBG scintigraphic assessment of cardiac adrenergic activity in response to altitude hypoxia. J Nucl Med 1990; 31: 34–7.

    PubMed  CAS  Google Scholar 

  31. Gohl K, Feistel H, Weikl A, Bachman K, Wolf F. Congenital myocardial sympathetic dysinnervation — a structural defect of idiopathic long QT syndrome. PACE 1991; 14: 1544–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dae, M.W. (1992). Scintigraphic assessment of cardiac innervation using iodine-123 metaiodobenzylguanidine. In: van der Wall, E.E., Sochor, H., Righetti, A., Niemeyer, M.G. (eds) What’s New in Cardiac Imaging?. Developments in Cardiovascular Medicine, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2456-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2456-0_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5083-8

  • Online ISBN: 978-94-011-2456-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics