Skip to main content

Myocardial metabolic imaging with carbon-11-acetate

  • Chapter
What’s New in Cardiac Imaging?

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 133))

Abstract

The noninvasive quantification of regional myocardial oxygen consumption has long been an objective of cardiovascular research. It’s potential utility lies primarily in the assessment of patients with ischemic heart disease where the delineation of viable myocardium is essential in determining which patients may benefit from percutaneous transluminal coronary angioplasty or coronary artery bypass grafting. In addition, the quantification of myocardial oxidative metabolism is important in defining the pathophysiology of many other cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann SR, Fox KA, Geltman EM, Sobel BE. Positron emission tomography of the heart. Prog Cardiovasc Dis 1985; 28: 165–94.

    Article  PubMed  CAS  Google Scholar 

  2. Myears DW, Sobel BE, Bergmann SR. Substrate use in ischemic and reperfused canine myocardium: quantitative considerations. Am J Physiol 1987; 253: H107–14.

    Google Scholar 

  3. Schelbert HR, Henze E, Schon HR et al. C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. III. In vivo demonstration of the effects of substrate availability on myocardial metabolism. Am Heart J 1983; 105: 492–504.

    Article  PubMed  CAS  Google Scholar 

  4. Schelbert HR, Henze E, Sochor H et al. Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 1986; 111: 1055–64.

    Article  PubMed  CAS  Google Scholar 

  5. Phelps ME, Hoffman EJ, Selin C et al. Investigation of [18F]2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med 1978; 19: 1311–9.

    PubMed  CAS  Google Scholar 

  6. Fox KA, Abendschein DR, Ambos HD, Sobel BE, Bergmann SR. Efflux of metabolized and nonmetabolized fatty acid from canine myocardium. Implications for quantifying myocardial metabolism tomographically. Circ Res 1985; 57: 232–43.

    CAS  Google Scholar 

  7. Williamson JR. Effects of insulin and starvation on the metabolism of acetate and pyruvate in the perfused rat heart. Biochem J 1964; 93: 97–105.

    PubMed  CAS  Google Scholar 

  8. Randle PJ, England PJ, Denton RM. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem J 1970; 117: 677–95.

    PubMed  CAS  Google Scholar 

  9. Taegtmeyer H. Myocardial metabolism. In: Phelps M, Mazziotta J, Schelbert H, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press, 1986: 149–95.

    Google Scholar 

  10. Pike VW, Eakins MN, Allan RM, Selwyn AP. Preparation of [l-11C] acetate-an agent for the study of myocardial metabolism by positron emission tomography. Int J Appl Radiat Isot 1982; 33: 505–12.

    Article  PubMed  CAS  Google Scholar 

  11. Allan RM, Selwyn AP, Pike VW, Eakins MN, Maseri A. In vivo experimental and clinical studies of normal and ischemic myocardium using 11C-acetate [abstract]. Circulation 1980; 62(4 Suppl III):III 74.

    Google Scholar 

  12. Allan RM, Pike VW, Maseri A, Selwyn AP. Myocardial metabolism of 11C-acetate: experimental and patient studies [abstract]. Circulation 1981; 64(4 Suppl IV): IV 75.

    Google Scholar 

  13. Selwyn AP, Allan RM, Pike V, Fox K, Maseri A. Positive labeling of ischemic myocardium: a new approach in patients with coronary disease [abstract]. Am J Cardiol 1981; 47: 481.

    Article  Google Scholar 

  14. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987; 76: 687–96.

    Article  PubMed  CAS  Google Scholar 

  15. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 1988; 63: 628–34.

    Article  PubMed  CAS  Google Scholar 

  16. Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 1988; 12: 1054–63.

    Article  PubMed  CAS  Google Scholar 

  17. Buxton DB, Nienaber CA, Luxen A et al. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [l-11C]acetate and dynamic positron emission tomography. Circulation 1989; 79: 134–42.

    Article  PubMed  CAS  Google Scholar 

  18. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [l-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 1990; 81:1594–1605.

    Article  PubMed  CAS  Google Scholar 

  19. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 1989; 30: 187–93.

    PubMed  CAS  Google Scholar 

  20. Henes CG, Bergmann SR, Walsh MN, Sobel BE, Geltman EM. Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate. J Nucl Med 1989; 30: 1489–99.

    PubMed  CAS  Google Scholar 

  21. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [l-11C]acetate and dynamic positron tomography. Circulation 1989; 80: 863–72.

    Article  PubMed  CAS  Google Scholar 

  22. Walsh MN, Geltman EM, Brown MA et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 1989; 30: 1798–1808.

    PubMed  CAS  Google Scholar 

  23. Kotzerke J, Hicks RJ, Wolfe E et al. Three-dimensional assessment of myocardial oxidative metabolism: a new approach for regional determination of PET-derived carbon-11-acetate kinetics. J Nucl Med 1990; 31: 1876–93.

    PubMed  CAS  Google Scholar 

  24. Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol 1972; 32: 516–22.

    PubMed  CAS  Google Scholar 

  25. Nelson RR, Gobel FL, Jorgensen CR, Wang K, Wang Y, Taylor HL. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 1974; 50: 1179–89.

    Article  PubMed  CAS  Google Scholar 

  26. Gobel FL, Nordstrom LA, Nelson RP, Jorgensen CR, Wang Y The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 1978; 57: 549–56.

    Article  PubMed  CAS  Google Scholar 

  27. Hicks RJ, Dick RJ, Molina E, Wolpers HG, Al-Aouar ZR, Schwaiger M. Assessment of myocardial viability early following infarction using PET-derived C-11 acetate kinetics [abstract]. Circulation 1990; 82(4 Suppl III): III 479.

    Google Scholar 

  28. Czernin J, Chan S, Brunken R, Porenta G, Phelps M, Schelbert H. Accuracy of early PET blood flow and metabolic measurements for predicting late improvement in the clinical infarct zone [abstract]. J Am Coll Cardiol 1991; 17(2 Suppl A): 347A.

    Article  Google Scholar 

  29. Gropler RJ, Siegel BA, Sampathkumaran K, Perez JE, Geltman EM. Maintenance of oxidative metabolism determines recovery of contractile and metabolic function after myocardial infarction [abstract]. Circulation 1990; 82(4 Suppl III): III 479.

    Google Scholar 

  30. Gropler RJ, Siegel BA, Sampathkumaran K, Perez JE, Bergmann SR, Geltman EM. Comparison of positron emission tomography using C-ll acetate with F-18 fluorodeoxyglucose in predicting myocardial viability [abstract]. J Am Coll Cardiol 1991; 17(2 Suppl A): 121A.

    Article  Google Scholar 

  31. Henes CG, Bergmann SR, Perez JE, Sobel BE, Geltman EM. The time course of restoration of nutritive perfusion, myocardial oxygen consumption, and regional function after coronary thrombolysis. Coronary Artery Dis 1990; 1: 687–96.

    Article  Google Scholar 

  32. Gropler RG, Siegel BA, Geltman EM. Myocardial uptake of carbon-11-acetate as an indirect estimate of regional myocardial blood flow. J Nucl Med 1991; 32: 245–51.

    PubMed  CAS  Google Scholar 

  33. Chan SY, Brunken RC, Phelps ME, Schelbert HR. Use of the metabolic tracer carbon-11-acetate for evaluation of regional myocardial perfusion. J Nucl Med 1991; 32: 665–72.

    PubMed  CAS  Google Scholar 

  34. Senneff MJ, Bergmann SR, Henes CG, Sobel BE, Geltman EG. Impaired myocardial oxidative metabolism assessed with positron emission tomography (PET) in patients with chest pain and normal coronary arteries [abstract]. J Nucl Med 1990; 31 Suppl: 713.

    Google Scholar 

  35. Hicks RJ, Kalff V, Savas V, Hutchins G, Kirsch M, Schwaiger M. C-11 acetate kinetics as a marker of right ventricular work [abstract]. J Am Coll Cardiol 1990; 15(2 Suppl A): 81A.

    Article  Google Scholar 

  36. Hicks RJ, Savas V, Currie PJ, Kalff V, Kuhl DE, Swaigher M. PET-derived C-11 acetate kinetics as a marker of metabolic performance in the pressure and volume loaded heart [abstract]. J Nucl Med 1990; 31 Suppl: 773.

    Google Scholar 

  37. Chan SY, Warner-Stevenson L, Brunken RC, Krivokapich J, Phelps ME, Schelbert HR. Myocardial oxygen consumption in patients with idiopathic dilated cardiomyopathy [abstract]. J Nucl Med 1990; 31 Suppl: 773.

    Google Scholar 

  38. Czernin J, Porenta G, Brunken RC, Wong BL, Tillisch J, Phelps ME et al. Infarct vessel patency benefits both oxidative and glycolytic metabolism in acute myocardial infarction [abstract]. Circulation 1990; 82(4 Suppl III): III 85.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walsh, M.N. (1992). Myocardial metabolic imaging with carbon-11-acetate. In: van der Wall, E.E., Sochor, H., Righetti, A., Niemeyer, M.G. (eds) What’s New in Cardiac Imaging?. Developments in Cardiovascular Medicine, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2456-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2456-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5083-8

  • Online ISBN: 978-94-011-2456-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics